Hearing pseudoconvexity in Lipschitz domains with holes via $\overline\partial$ - Archive ouverte HAL
Article Dans Une Revue Mathematische Zeitschrift Année : 2017

Hearing pseudoconvexity in Lipschitz domains with holes via $\overline\partial$

Résumé

Let Ω = Ω \ D where Ω is a bounded domain with connected complement in C n (or more generally in a Stein manifold) and D is relatively compact open subset of Ω with connected complement in Ω. We obtain characterizations of pseudoconvexity of Ω and D through the vanishing or Hausdorff property of the Dolbeault cohomology groups on various function spaces. In particular, we show that if the boundaries of Ω and D are Lipschitz and C 2-smooth respectively, then both Ω and D are pseudoconvex if and only if 0 is not in the spectrum of the ∂-Neumann Laplacian on (0, q)-forms for 1 ≤ q ≤ n − 2 when n ≥ 3; or 0 is not a limit point of the spectrum of the ∂-Neumannn Laplacian on (0, 1)-forms when n = 2. Mathematics Subject Classification (2000): 32C35, 32C37, 32W05.
Fichier principal
Vignette du fichier
annulusFLTS.pdf (428.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01398638 , version 1 (17-11-2016)

Identifiants

Citer

Siqi Fu, Christine Laurent-Thiébaut, Mei-Chi Shaw. Hearing pseudoconvexity in Lipschitz domains with holes via $\overline\partial$. Mathematische Zeitschrift, 2017, 287 (3-45), pp.1157-1181. ⟨10.1007/s00209-017-1863-6⟩. ⟨hal-01398638⟩
121 Consultations
49 Téléchargements

Altmetric

Partager

More