Spectral theory for random Poincaré maps - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2017

Spectral theory for random Poincaré maps

Résumé

We consider stochastic differential equations, obtained by adding weak Gaussian white noise to ordinary differential equations admitting N asymptotically stable periodic orbits. We construct a discrete-time, continuous-space Markov chain, called a random Poincaré map, which encodes the metastable behaviour of the system. We show that this process admits exactly N eigenvalues which are exponentially close to 1, and provide expressions for these eigenvalues and their left and right eigenfunctions in terms of committor functions of neighbourhoods of periodic orbits. The eigenvalues and eigenfunctions are well-approximated by principal eigenvalues and quasistationary distributions of processes killed upon hitting some of these neighbourhoods. The proofs rely on Feynman–Kac-type representation formulas for eigenfunctions, Doob's h-transform, spectral theory of compact operators, and a recently discovered detailed-balance property satisfied by committor functions.
Fichier principal
Vignette du fichier
spectralTheoryForRandomPoincareMaps.pdf (828.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01397184 , version 1 (15-11-2016)
hal-01397184 , version 2 (21-04-2017)

Identifiants

Citer

Manon Baudel, Nils Berglund. Spectral theory for random Poincaré maps. SIAM Journal on Mathematical Analysis, 2017, 49 (6), pp.4319-4375. ⟨10.1137/16M1103816⟩. ⟨hal-01397184v2⟩
645 Consultations
240 Téléchargements

Altmetric

Partager

More