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Spectral theory for random Poincaré maps

Manon Baudel, Nils Berglund

Abstract
We consider stochastic differential equations, obtained by adding weak Gaussian white
noise to ordinary differential equations admitting N asymptotically stable periodic
orbits. We construct a discrete-time, continuous-space Markov chain, called a random
Poincaré map, which encodes the metastable behaviour of the system. We show that
this process admits exactly N eigenvalues which are exponentially close to 1, and
provide expressions for these eigenvalues and their left and right eigenfunctions in
terms of committor functions of neighbourhoods of periodic orbits. The eigenvalues
and eigenfunctions are well-approximated by principal eigenvalues and quasistationary
distributions of processes killed upon hitting some of these neighbourhoods. The
proofs rely on Feynman–Kac-type representation formulas for eigenfunctions, Doob’s
h-transform, spectral theory of compact operators, and a recently discovered detailed-
balance property satisfied by committor functions.

Date. November 15, 2016. Revised version, April 20, 2017.
2010 Mathematical Subject Classification. 60J60, 60J35 (primary), 34F05, 45B05 (secondary)
Keywords and phrases. Stochastic differential equation, periodic orbit, return map, random Poincaré
map, metastability, quasistationary distribution, Doob h-transform, spectral theory, Fredholm the-
ory, stochastic exit problem.

1 Introduction

A very useful method to analyse the dynamics of ordinary differential equations (ODEs) ad-
mitting one or several periodic orbits consists in introducing a submanifold of codimension
1, which is transversal to the flow. Successive intersections of orbits with this submanifold
are described by an iterated map, called a first-return map or Poincaré map. This map
has proved extremely useful for a number of reasons. First, it replaces a d-dimensional
ODE by a (d − 1)-dimensional map, which is often easier to visualise. Perhaps more im-
portantly, it simplifies the stability analysis of periodic orbits, because it allows to get rid
of neutral transversal directions. Furthermore, Poincaré maps simplify the classification of
bifurcations of periodic orbits, since the problem is reduced to the easier one of classifying
bifurcations of fixed points of maps.

When noise is added to an ODE, it becomes a stochastic differential equation (SDE).
SDEs with multiple periodic orbits appear in many applications, such as enzyme reaction
models [47, 26], neuron dynamics [28, 39] and related piecewise deterministic Markov
processes [29]. A natural analogue of the Poincaré map in this situation was introduced
in [37], and further analysed in [38], by Hitczenko and Medvedev who called it Poincaré
map of randomly perturbed periodic motion, or random Poincaré map for short. Random
Poincaré maps have already proved useful in several applications: they allowed to study
interspike interval statistics in the stochastic FitzHugh–Nagumo equations [12], the first-
passage location through an unstable periodic orbit in planar SDEs [9], and mixed-mode
oscillation patterns in systems admitting a folded-node singularity [11].
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Mathematically, a random Poincaré map is described by a discrete-time, continuous-
space Markov chain. If the ODE perturbed by noise admits N > 2 stable periodic orbits,
and the noise intensity σ is weak, the Markov chain will tend to spend very long time
intervals in small neighbourhoods of the periodic orbits, with occasional transitions between
these neighbourhoods. This kind of behaviour is known as metastability.

The metastable dynamics of SDEs has been studied on the level of exponential asymp-
totics by Freidlin and Wentzell [32], using the theory of large deviations. In the particular
case where the original ODE derives from a potential and the noise is homogeneous and
isotropic, the perturbed system’s invariant measure is known explicitly, and the dynamics
is reversible with respect to this measure. Reversibility greatly simplifies the analysis of
the system. In particular, the potential-theoretic approach developed by Bovier, Eckhoff,
Gayrard and Klein in [18, 19] for SDEs yields very precise estimates on metastable tran-
sition times and small eigenvalues of the generator, which are governed by the so-called
Eyring–Kramers formula. See for instance [5] for a recent review, and the monograph [17]
for a comprehensive account of the potential-theoretic approach.

A drawback of the potential-theoretic approach to metastability is that it has so far
only been developed in the reversible case. Systems admitting periodic orbits are, how-
ever, strongly non-reversible. Recently, there have been a few attempts to derive Eyring–
Kramers-like formulas for non-reversible systems. For instance, in [45] Lu and Nolen pro-
vided expressions for transition times and reactive times in terms of committor functions
(that is, probabilities to hit a set A before a set B), based on the transition-path theory
introduced by E and Vanden–Eijnden [30]. In [16], Bouchet and Reygner formally derived
an Eyring–Kramers law for a class of non-reversible systems admitting an isolated saddle,
based on WKB asymptotics. Furthermore, in [44], Landim and Seo obtained an Eyring–
Kramers formula for certain non-reversible random walks for which the invariant measure is
explicitly known, using two variational formulae for the capacity. In [43] Landim, Mariani,
and Seo provide a sharp estimate for the transition times between two different wells for a
class of non-reversible diffusion processes (again with known invariant measure). Despite
these promising results, a full theory providing sharp asymptotics for metastable transition
times for general non-reversible systems has yet to be developed.

Fortunately, it turns out that some central ideas in [19], concerning the spectral prop-
erties of the generator, do in fact not require any potential-theoretic tools. The key as-
sumption is that the metastable states can be ordered in a particular way, from most stable
to least stable, forming a so-called metastable hierarchy. Furthermore, it has become ap-
parent that the small eigenvalues of the diffusion and the corresponding eigenfunctions are
strongly connected to principal eigenvalues and quasistationary distributions (QSDs) of
certain related processes. See for instance [14] for the case of reversible Markovian jump
processes, [24] for birth-and-death processes and related population models, and [27] for the
case of reversible diffusions. Principal eigenvalues and QSDs are much easier to determine
numerically than arbitrary eigenvalues and eigenfunctions.

The aim of the present work is to derive spectral information on random Poincaré
maps, associated with non-reversible SDEs obtained by perturbing ODEs admitting N >
2 asymptotically stable periodic orbits. Indeed, discrete-time continuous-space Markov
chains are amenable to Fredholm theory, showing that transition probabilities can be rep-
resented as sums of projectors on invariant subspaces multiplied by eigenvalues. Our main
result, Theorem 3.2, shows that for sufficiently small noise, the random Poincaré map ad-
mits exactly N eigenvalues exponentially close to 1, which are all real, while all remaining
eigenvalues are bounded away from 1. Theorems 3.4 and 3.8 provide expressions for the
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associated right and left eigenfunctions. All these quantities are expressed in terms of
committor functions associated with small neighbourhoods of the stable periodic orbits.
Furthermore, we show that the eigenvalues and left eigenfunctions are well approximated
by principal eigenvalues and QSDs of processes killed upon hitting some of these neigh-
bourhoods. Therefore our results provide links between spectral properties of the random
Poincaré map and quantities that are accessible to numerical simulations.

The spectral decomposition that we obtain can be interpreted as showing that on long
timescales, the dynamics of the system can be described by an N -state Markov chain. The
N states correspond to the N stable periodic orbits, and one-step transition probabilities
between different states are exponentially small. In particular, the metastable hierarchy
assumption implies that there are N − 1 timescales of the form eHi/σ

2 , with H1 > H2 >
· · · > HN−1 > 0. The time needed to reach the union of the k first periodic orbits
starting from the k + 1st orbit is of order eHk/σ

2 , while the kth eigenvalue of the random
Poincaré map behaves like 1−e−Hk/σ

2 . Note that this is compatible with [32, Theorem 7.3,
Chapter 6], which states that the generator of the diffusion admits N − 1 eigenvalues with
exponentially small real parts, of order − e−Hk/σ

2 . A new feature of our results is that they
concern the eigenvalues of the discrete-time Markov chain instead of the continuous-time
generator, and that we are able to prove that these eigenvalues are real. Apart from this
relation interpretable in terms of metastable transition times, the general link between
eigenvalues of the discrete-time and continous-time generators is not yet fully understood
(except in trivial cases where the dynamics transversal to periodic orbits is completely
decoupled from the phase dynamics).

To obtain these results, we combine various techniques developed in prior works. One
of them is the representation of eigenfunctions in terms of Laplace transforms of hitting
times of well-chosen sets, already present in [19]. Another key idea is the fact, discovered
in [13], that committor functions of not necessarily reversible Markov chains satisfy a kind
of detailed balance condition. We also rely on perturbation theory for compact linear
operators (see e.g. [41, 35]), Doob’s h-transform, which is linked to the theory of quasi-
stationary distributions as reviewed in [25], as well as sample-path estimates for SDEs
which were developed in [7, 8, 9].

The remainder of this work is organised as follows. In Section 2, we define precisely
the kind of SDEs that we are going to consider, provide a construction of their random
Poincaré maps, and define the spectral decomposition. Section 3 contains the main re-
sults of the work. In Section 4, we provide an outline of the main steps of the proofs.
Subsequent sections are dedicated to technical details of the proofs. Section 5 contains
estimates of the spectral gap and principal eigenfunction of the process killed upon leaving
a neighbourhood of a periodic orbit. In Section 6, we show that the random Poincaré map
can be approximated by a finite-rank operator by providing estimates for the operator
norm of their difference. The spectral properties of the finite-rank operator are described
in Section 7. Section 8 provides sample-path estimates needed to apply the bounds on
operator norms, while Section 9 contains the proofs of the main results. Appendix A re-
calls some properties of Doob’s h-transform, whereas Appendix B recalls some results on
Floquet theory.

Notations: Unless otherwise specified, ‖·‖ denotes the supremum norm of a function or a
linear operator. The indicator function of an event or set A is denoted 1A . The symbol
id is used for the identity operator as well as the identity matrix.

Acknowledgements: The authors wish to thank Luc Hillairet for useful advice on spectral-
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theoretical aspects, and two anonymous referees for their numerous constructive comments
on the first version of the manuscript, which allowed to substantially improve its readability.

2 Set-Up

2.1 Deterministic system

Let D0 ⊂ Rd+1 be an open, connected set and let f ∈ C2
(
D0,Rd+1

)
. We consider the

(d+ 1)-dimensional deterministic ordinary differential equation (ODE) given by

ż = f(z) . (2.1)

Assumption 2.1 (Invariant domain). There exists a bounded, open connected set D ⊂ D0

which is positively invariant under the flow of (2.1). ♣

This assumption ensures that for all z ∈ D the flow ϕt(z) is defined for all t > 0. Recall
that the image {ϕt(z) : t > 0} is called the (positive) orbit of z. The ω-limit set of z is
the set of accumulation points of ϕt(z) as t → ∞. If ϕt(z) is defined for all t 6 0, its set
of accumulation points as t→ −∞ is called the α-limit set of z. A heteroclinic connection
between two sets A,B ⊂ Rd+1 invariant under the flow is an orbit admitting A as α-limit
set and B as ω-limit set.

Recall that Γ is a periodic orbit of period T > 0 of (2.1) if there exists a periodic
function γ : R→ D of minimal period T such that

γ̇(t) = f(γ(t)) ∀t ∈ R . (2.2)

Then Γ is simply the image {γ(t) : t ∈ [0, T )} of γ. The periodic orbit is called linearly
asymptotically stable if all Floquet multipliers of the linearised system ξ̇ = ∂zf(γ(t))ξ are
strictly smaller than 1 in modulus. A periodic orbit is linearly unstable if it admits at least
one Floquet multiplier of modulus strictly larger than 1.

Assumption 2.2 (Limit sets). There are finitely many ω-limit sets in D. They include
N > 2 distinct linearly asymptotically stable periodic orbits Γ1, . . . ,ΓN . All other ω-
limit sets in D are either linearly unstable stationary points, or linearly unstable periodic
orbits. Furthermore, there exists a smooth orientable d-dimensional manifold Σ ⊂ D with
boundary ∂Σ ⊂ ∂D, such that for all x ∈ Σ, f(x) is not tangent to Σ (transversality).
Each stable periodic orbit Γi intersects Σ at exactly one point x?i . In addition, there are no
heteroclinic connections between unstable orbits or between unstable orbits and unstable
stationary points. ♣

Note that D is not required to be simply connected: it can have the shape of a solid
torus containing all periodic orbits in its interior (cf. Fig. 3). The deterministic Poincaré
map associated with Σ is then the map Π : Σ→ Σ defined by

Π(x) = ϕτ (x) where τ = inf{t > 0: ϕt(x) ∈ Σ} . (2.3)

We will always implicitly assume that τ <∞ for almost all x ∈ Σ. In other words, except
perhaps for a set of initial conditions of zero Lebesgue measure, orbits starting on Σ always
return to Σ in a finite time.

We will denote by
Aj =

{
x ∈ Σ: lim

n→∞
Πn(x) = x?j

}
(2.4)

the basin of attraction of the orbit Γj . The Aj are open, disjoint subsets of Σ, and the
union of their closures is equal to Σ.

4



Γ1

Γ3

Γ2

Σ ⊂
Rd

x?1

x?2

x?3

Figure 1: Sketch of Poincaré map for a deterministic system admitting several stables
periodic orbits.

Remark 2.3. Note that Assumption 2.2 rules out the existence of any other ω-limit sets
than periodic orbits and unstable stationary points. We have formulated the assumption
in this way for simplicity. In fact, what we really need is that for each ω-limit set other
than the Γi, noise added to the system is likely to move sample paths away from these sets
in a time which is negligible with respect to typical transition times between the Γi.

Furthermore, we believe that the absence of heteroclinic connections is not required.
We only need that a sample path starting near an unstable ω-limit set reaches the neigh-
bourhood of a stable periodic orbit after a negligible time. ♦

2.2 Stochastic system

We turn now to random perturbations of the ODE (2.1), given by Itô stochastic differential
equations (SDEs) of the form

dzt = f(zt) dt+ σg(zt) dWt . (2.5)

HereWt denotes a k-dimensional standard Wiener process on a probability space (Ω,F ,P)
with k > d + 1, while g ∈ C1(D0,R(d+1)×k), and σ > 0 is a small parameter. We will
denote by Zzt , or simply Zt, the solution of (2.5) starting in z at time 0. The corresponding
probability is written Pz{·}, and expectations with respect to Pz{·} are denoted Ez{·}.
The infinitesimal generator of the diffusion process is the second-order differential operator

L =
d+1∑
i=1

fi(z)
∂

∂zi
+
σ2

2

d+1∑
i,j=1

Dij(z)
∂2

∂zi∂zj
(2.6)

where D(z) = g(z)g(z)T denotes the diffusion matrix.

Assumption 2.4 (Ellipticity). There exist constants c+ > c− > 0 such that

c−‖ξ‖2 6 〈ξ,D(z)ξ〉 6 c+‖ξ‖2 (2.7)

for all z ∈ D and all ξ ∈ Rd+1. ♣
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We recall a few elements from the large-deviation theory for SDEs developed by Freidlin
and Wentzell [32]. Given a finite time interval [0, T ] and a continuous function γ : [0, T ]→
D, one defines a rate function by

I[0,T ](γ) =


1

2

∫ T

0
(γ̇s − f(γs))

TD(γs)
−1(γ̇s − f(γs)) ds if γ ∈ H1,

+∞ otherwise .
(2.8)

Roughly speaking, the probability of a sample path of (2.5) tracking γ behaves like
e−I[0,T ](γ)/σ2

in the limit σ → 0 (see [32] for details). If x? belongs to one of the Γi
and y ∈ D, we define the quasipotential

V (x?, y) = inf
T>0

inf
γ:x?→y

I[0,T ](γ) , (2.9)

where the second infimum runs over all continuous paths γ such that γ0 = x? and γT = y. It
is easy to see that if y1 and y2 belong to the same periodic orbit, then V (x?, y1) = V (x?, y2).
Indeed one can connect y1 to y2 at zero cost by tracking the deterministic flow, so that
V (y1, y2) = 0, and similarly one has V (y2, y1) = 0. Thus for 1 6 i 6= j 6 N , the quantity

H(i, j) = V (x?i , x
?
j ) (2.10)

measures the cost of reaching the jth periodic orbit from the ith periodic orbit in arbitrary
time. If i 6∈ A ⊂ {1, . . . , N} it will be convenient to use the notation

H(i, A) = min
j∈A

H(i, j) (2.11)

for the cost of reaching any of the orbits in
⋃
j∈A Γj . The following non-degeneracy as-

sumption will greatly simplify the spectral analysis.

Assumption 2.5 (Metastable hierarchy). There exists a constant θ > 0 such that the
stable periodic orbits Γ1, . . . ,ΓN can be ordered in such a way that if one writes Mj =
{1, . . . , j}, then

H(j,Mj−1) 6 min
i<j

H(i,Mj \ {i})− θ . (2.12)

We say that the orbits are in metastable order, and write Γ1 ≺ Γ2 ≺ · · · ≺ ΓN . ♣

The metastable order can be determined in the following way. First one computes, for
each i, the minimal cost H(i,MN \{i}) for reaching another orbit from Γi. If the minimum
min16i6N H(i,MN \ {i}) is reached in a unique i, then this i will be relabelled N . The
procedure is then reiterated with the other N − 1 orbits, discarding the Nth orbit, until
all orbits have been ordered. Figure 2 illustrates the procedure in case the quasipotential
derives from a global potential U (i.e., such that V (x?i , x

?
j ) − V (x?j , x

?
i ) = U(x?j ) − U(x?i )

for all i, j), which is not the case for a generic irreversible system.
The metastable hierarchy assumption is related to the concept of W -graphs used by

Wentzell in [49] in the case of finite matrices, and shown in [32, Theorem 7.3, Chapter 6] to
determine the real parts of exponentially small eigenvalues of the generator of a diffusion.
The W -graphs can be used without the metastable hierarchy assumption to determine the
relevant exponential timescales, but if this assumption holds then the W -graph algorithm
becomes particularly simple, since only the edges from vertex j to one vertex in Mj−1
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H(2,M1)H(3,M2)

H(4,M3)

x?2

x?3

x?1

x?4

Figure 2: In cases where there exists a global potential U , such that V (x?i , x
?
j )−V (x?j , x

?
i ) =

U(x?j ) − U(x?i ) for all i, j, the metastable hierarchy can be determined by a graphical
construction. In this example, the x?i have already been labelled in such a way that (2.12)
is satisfied, so that Γ1 ≺ Γ2 ≺ Γ3 ≺ Γ4.

contribute. See also [22, 21] for recent results based on W -graphs on how to determine the
metastable hierarchy efficiently in case N is large.

Finally, we will need a type of recurrence assumption, because so far we have not
assumed much on the behaviour of the diffusion outside the set D. In particular, the
solutions of the SDE (2.5) may not even exist globally in time. In fact, we will consider
two slightly different situations, which however can be treated in a uniform way.

Assumption 2.6 (Confinement property). One of the two following situations holds.

A. Either there exist a Lyapunov function V ∈ C2(D0,R+) such that ‖V (z)‖ → ∞ as
z → ∂D0 (or as ‖z‖ → ∞ in case D0 is unbounded) satisfying

(LV )(z) 6 −c+ d1{z∈D} ∀z ∈ D0 (2.13)

for some constants c > 0 and d > 0.

B. Or
V̄ (∂D) := min

16i6N
inf
y∈∂D

V (x?i , y) > max
i 6=j

H(i, j) + θ′ (2.14)

for a constant θ′ > 0. ♣

By [46, Theorem 4.2], variant A implies that the process {Zt}t>0 is positive Harris
recurrent. Recall that a process is Harris recurrent if there exists a σ-finite measure µ
such that the first-hitting time of a set A is almost surely finite whenever µ(A) > 0. Such
a process admits an essentially unique invariant measure π, and is called positive Harris
recurrent if π can be normalised to be a probability measure. The ellipticity assumption 2.4
implies that the restriction of π to D is absolutely continuous with respect to Lebesgue
measure. Furthermore, [46, Theorem 4.3], applied with f = 1, shows that the first-hitting
time τD of D satisfies

Ez{τD} 6
1

c
V (z) (2.15)

for all z ∈ D0.
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Γ1

Γ2

Σ

Σ′

Zx0
τ = Xx0

1

Zx0
τ ′

x0

D

Figure 3: Sketch of a random Poincaré map when the process starts in the basin of attrac-
tion of a stable periodic orbit Γ1.

Remark 2.7. If V is a quadratic form, then we have LV = 〈f,∇V 〉 + O(σ2). Thus
a quadratic deterministic Lyapunov function satisfying 〈f,∇V 〉 6 −cV outside D may
already fulfil Condition (2.13) if σ is small enough. ♦

Variant B of Assumption 2.6 says that it should be harder to reach the boundary ∂D
of D than to make any transition between periodic orbits. In that situation, we are going
to consider the process conditioned on staying in D. Doob’s h-transform (cf. Appendix A)
will allow us to relate the spectral properties of the conditioned process with those of the
process killed upon leaving D. Both processes are not influenced by what happens outside
D, so that global existence of solutions is not required.

2.3 Random Poincaré map

We now define a discrete-time process recording successive intersections of sample paths
with the surface of section Σ. The following basic estimate shows that solutions starting
in D will hit Σ almost surely after a finite time (and thus return to Σ infinitely often).

Proposition 2.8. Let τΣ = inf{t > 0: Zt ∈ Σ}. There exist constants σ0,M > 0 such
that for all σ < σ0,

sup
z∈D

Ez
{
τΣ

}
6M log(σ−1) . (2.16)

Consider first the case where variant A of Assumption 2.6 holds (for variant B, see
Section 2.7). Assume we have chosen a parametrisation of Σ by a variable x ∈ Rd.
By a slight abuse of notation, we will denote the domain of x by Σ as well. For an
initial condition X0 ∈ Σ, we would like to study the sequence (X1, X2, . . . ) of successive
intersections of the sample path (ZX0

t )t>0 with Σ. We cannot proceed exactly as in the
deterministic case, because τ defined as in (2.3) is equal to 0 almost surely, due to the
irregularity of Brownian paths. This problem is cured quite easily, however. One can
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for instance introduce a second manifold Σ′ ⊂ D which does not intersect Σ, such that
∂Σ′ ⊂ ∂D and the vector field f is transversal to Σ′ as well. Then setting τ0 = 0, it suffices
to set for each n ∈ N0

τ ′n+1 = inf{t > τn : ZX0
t ∈ Σ′} ,

τn+1 = inf{t > τ ′n+1 : ZX0
t ∈ Σ} , (2.17)

and to define Xn+1 to be the x-coordinate of ZX0
τn+1
∈ Σ, see Figure 3.

The strong Markov property implies that the law of Xn+1 given Xn is independent of
n and of all Xm with m < n, that is, (Xn)n>0 forms a time-homogeneous Markov chain.
Since each Xn can be seen as the first-exit location from a bounded set, results from [4]
show that the law of Xn has a continuous density. We thus obtain a continuous-space
Markov kernel K with continuous density k, defined by

K(x,A) = Px
{
X1 ∈ A

}
=

∫
A
k(x, y) dy (2.18)

for any x ∈ Σ and any Borel set A ⊂ Σ. We will denote n-fold iterates of K by

Kn(x,A) = Px
{
Xn ∈ A

}
=

∫
A
kn(x, y) dy (2.19)

where the time-n transition densities kn can be determined recursively by the Chapman–
Kolmogorov equation

kn+1(x, y) =

∫
Σ
kn(x, z)k(z, y) dz . (2.20)

The Markov kernel K induces two Markov semigroups in the standard way. Namely, with
any bounded measurable test function f : Σ→ R, we associate the function

(Kf)(x) =

∫
Σ
k(x, y)f(y) dy = Ex

{
f(X1)

}
. (2.21)

Furthermore, with any (signed) Borel measure µ on Σ with density m, we associate the
measure

(µK)(dy) =

(∫
Σ
m(x)k(x, y) dx

)
dy = Pµ{X1 ∈ dy} . (2.22)

Since in what follows, all measures will have densities, we will often use the same symbol for
a measure and its density, and write (mK)(y) for the integral appearing on the right-hand
side of (2.22).

2.4 Spectral decomposition

Since Σ is bounded and k is continuous, K is a compact operator (cf. [48, Section VI.5]),
which implies that the behaviour of its large iterates can be described by Fredholm theory.
In particular, the Riesz–Schauder theorem [48, Theorem V1.15] states that K has discrete
spectrum, with all eigenvalues except possibly 0 having finite multiplicity. The eigenvalues
are roots of the Fredholm determinant, first introduced in [31], which is well-defined since
k is bounded.

Let us denote by (λj)j∈N0 the eigenvalues of K, ordered by decreasing modulus, and
by πj and φj the left and right eigenfunctions respectively. That is,

(πjK)(x) = λjπj(x) and (Kφj)(x) = λjφj(x) (2.23)
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for all j ∈ N0. We can normalise the eigenfunctions in such a way that

πiφj :=

∫
Σ
πi(x)φj(x) dx = δij . (2.24)

In this way, the kernels φi(x)πi(y) are projectors on invariant subspaces of K. If the set of
eigenfunctions is complete, and all nonzero eigenvalues have multiplicity 1, then we have
the spectral decomposition

k(x, y) =
∑
i>0

λiφi(x)πi(y) , (2.25)

which entails the very useful property

kn(x, y) =
∑
i>0

λni φi(x)πi(y) . (2.26)

A similar spectral decomposition holds if there are eigenvalues of multiplicity higher than 1,
except that there may be nontrivial Jordan blocks. In what follows, we will show that K is
close to a finite-rank operator, defined by a sum with N terms. Therefore, the completeness
of the set of all eigenfunctions will not be an issue.

Jentzsch’s extension of the Perron–Frobenius theorem [40] shows that λ0 is real, positive
and simple, and that the eigenfunctions π0(x) and φ0(x) can be taken real and positive.
Since in our case, K is a stochastic Markov kernel (i.e. K(x,Σ) = 1 for all x ∈ Σ), we have
in fact λ0 = 1, while φ0(x) can be taken identically equal to 1, and π0(x) is an invariant
density, which by (2.24) is normalised to be a probability density. Under the spectral-gap
condition |λ1| < 1, the iterates kn(x, y) will converge to π0(y) for all x.

2.5 Process killed upon leaving a subset A

Given a Borel set A ⊂ Σ, several processes related to (Xn)n>0 will play an important rôle
in what follows. The simplest one is the process (XA

n )n>0 killed upon leaving A. Its kernel
KA has density

kA(x, y) = k(x, y)1{x∈A,y∈A} . (2.27)

This is in general a substochastic Markov process (KA(x,A) < 1), which can be turned
into a stochastic Markov process by adding to A an absorbing cemetery state ∂. We
denote its eigenvalues by λAi and its left and right eigenfunctions by πAi (x) and φAi (x).
The largest eigenvalue λA0 is still real, positive and simple, but in general smaller than 1.
It is called the principal eigenvalue of the process. Following [19], we call φA0 the (right)
principal eigenfunction of (XA

n )n>0. The normalised left eigenfunction πA0 is called the
quasistationary distribution (QSD) of the killed process. Under the spectral gap condition∣∣λA1 ∣∣ < λA0 , it satisfies

πA0 (B) = lim
n→∞

Px
{
XA
n ∈ B

∣∣ XA
n ∈ A

}
= lim

n→∞
Px
{
Xn ∈ B

∣∣ τ+
Ac > n

}
(2.28)

for any Borel set B ⊂ A, independently of x ∈ A. Here τ+
Ac = inf{n > 1: Xn 6∈ A} denotes

the first-exit time of the original process from A. A useful property of the QSD is that for
the process (Xn)n>0 one has

Pπ
A
0
{
τ+
Ac = n

}
= (λA0 )n−1(1− λA0 ) ∀n > 1 , (2.29)
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that is, the first-exit time from A has a geometric distribution with success probability
(1− λA0 ). In particular, we have

Eπ
A
0
{
τ+
Ac

}
=

1

1− λA0
. (2.30)

Remark 2.9. Note that if an eigenvalue λ of the original process satisfies the lower bound

|λ| > sup
x∈A

Px{X1 ∈ A} , (2.31)

then the principal eigenvalue of the process killed upon leaving A satisfies

λA0 6 |λ| , (2.32)

because λA0 = PπA0 {X1 ∈ A}. ♦

2.6 Trace of the process on A

A second important process is the trace (Xn)|A, which describes the process monitored
only while it visits A. This is still a Markov process, with kernel

K|A(x,dy) = Px
{
Xτ+

A
∈ dy

}
, (2.33)

where τ+
A = inf{n > 1: Xn ∈ A} denotes the first-return time to A. The density of K|A is

thus given by
k|A(x, y) =

∑
n>1

Px
{
τ+
A = n

}
kn(x, y)1{x∈A,y∈A} . (2.34)

If RAc(1; z1, dz2) = [id−KAc ]
−1(z1,dz2) denotes the resolvent at 1 of the kernel killed upon

leaving Ac, then k|A can also be written

k|A(x, y) =
[
k(x, y) +

∫
Ac

∫
Ac
k(x, z1)RAc(1; z1, dz2)k(z2, y) dz1

]
1{x∈A,y∈A} . (2.35)

One of the key points of our analysis will be to characterise the process monitored only
while visiting a neighbourhood of a well-chosen subset of the stable periodic orbits.

2.7 Process conditioned on staying in A

The last important kernel describes the process (X̄A
n )n>0 conditioned on remaining in A

forever, and is defined by

K̄A(x,B) = lim
n→∞

Px
{
XA

1 ∈ B
∣∣ XA

n ∈ A
}

= lim
n→∞

Px
{
X1 ∈ B

∣∣ τ+
Ac > n

}
(2.36)

for all Borel sets B ⊂ A. It can be constructed using Doob’s h-transform.

Proposition 2.10 (Doob h-transform). Assume the spectral gap condition
∣∣λA1 ∣∣ < λA0 .

Then the density of K̄A is given by

k̄A(x, y) =
1

λA0

φA0 (y)

φA0 (x)
kA(x, y) . (2.37)

Furthermore, the eigenvalues and eigenfunctions of K̄A are given by

λ̄An =
λAn
λA0

, π̄An (x) = πAn (x)φA0 (x) and φ̄An (x) =
φAn (x)

φA0 (x)
. (2.38)

11



This is a standard result, which is closely related to what is called ground state trans-
formation in quantum physics. For the reader’s convenience, we give a short proof in
Appendix A. Integrating (2.37) over y ∈ A, we see immediately that K̄A is a stochastic
Markov kernel. Its principal eigenvalue λ̄A0 is indeed equal to 1, and the corresponding right
eigenfunction is identically equal to 1. Proposition 2.10 shows that the spectral properties
of KA and K̄A determine one another, provided one knows the principal eigenvalue λA0 and
the corresponding right eigenfunction φA0 .

We finally discuss the situation where variant B of Assumption 2.6 holds. In that case,
we may consider the process ZDt killed upon leaving D. Proceeding exactly as above, we
can define a continuous-space Markov kernel KD describing the distribution of first-hitting
points of Σ after visiting Σ′. Because of the killing, KD is a substochastic kernel. However,
Doob’s h-transform allows us to define a stochastic kernel K̄D of the process conditioned
on staying in D forever. Proposition 2.10 then allows us to deduce spectral properties of
KD from those of K̄D, provided we manage to control the principal eigenvalue and right
eigenfunction of KD.

3 Results

We can now state the main results of this work. Throughout, we require Assumptions 2.1,
2.2, 2.4, 2.5 and 2.6 to hold. If variant A of the confinement assumption 2.6 holds, all
results concern the kernel K defined in (2.18). In case of variant B, they concern the
kernel K̄D of the Doob-transformed process introduced just above.

For i = 1, . . . , N , we let Bi ⊂ Σ be the closure of a neighbourhood of x?i , contained
in a ball centred in x?i and of radius δ > 0. Here δ is assumed to be small enough for
each Bi to be contained in the basin of attraction Ai of x?i (cf. (2.4)) and such that the
deterministic Poincaré map maps Bi strictly into itself (such a ball exists since the orbit
Γi is asymptotically stable). For 1 6 k 6 N we define the metastable neighbourhood

Mk =
k⋃
i=1

Bi . (3.1)

For a Borel set A ⊂ Σ we denote by τA = inf{n > 0: Xn ∈ A} its first-hitting time of A
and by τ+

A = inf{n > 1: Xn ∈ A} the first-return time of the process to A. If A and B are
disjoint, an important rôle will be played by the committor functions

Px
{
τA < τB

}
and Px

{
τ+
A < τ+

B

}
(3.2)

of hitting A before B. Note that these functions are identical whenever x 6∈ A ∪ B, while
Px{τA < τB} has value 1 in A and 0 in B. A rough bound on committor functions can be
obtained by large-deviation theory.

Proposition 3.1. For any η > 0, there exists δ0 > 0 such that if δ < δ0, then for any
1 6 i, j 6 N with i 6= j, any non-empty open set A ⊂ Aj and all x ∈ Bi, one has

−H(i, j)− η 6 lim
σ→0

σ2 logPx
{
τ+
A < τ+

Bi

}
6 −H(i, j) + η . (3.3)

This bound indicates that for x ∈ Bi and A ⊂ Aj , the committor Px{τ+
A < τ+

Bi
} is

exponentially small, of order e−H(i,j)/σ2 . We will see below that some committor functions
can be more precisely estimated in terms of certain principal eigenfunctions.
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3.1 Eigenvalue estimate

Fix a small constant η ∈ (0, θ) and set θ− = θ − η, where θ is given by the metastable
hierarchy assumption 2.5. In all results given below, it is always implicitly understood that
there exists a σ0 > 0, depending on η, such that the claims hold for all σ < σ0. We will
not repeat this condition in what follows.

Theorem 3.2 (Eigenvalue estimates). The N largest eigenvalues of K are real and positive
and satisfy

λ0 = 1 ,

λk = 1− Pπ̊
Bk+1
0

{
τ+
Mk

< τ+
Bk+1

}[
1 +O(e−θk/σ

2
)
]

for 1 6 k 6 N − 1 , (3.4)

where π̊Bk+1

0 is a probability measure concentrated on Bk+1 and θk = H(k + 1,Mk)/2− η.
Furthermore, there exists c > 0 such that

|λk| 6 ρ := 1− c

log(σ−1)
for all k > N . (3.5)

Finally, the principal eigenvalue of the process killed upon hittingMk satisfies

1− λM
c
k

0 = (1− λk)
[
1 +O(e−θk/σ

2
)
]

(3.6)

for 1 6 k 6 N − 1.

The probability measure π̊Bk+1

0 has an explicit definition: it is the QSD of the trace
process (X

Bk+1
n )|Mk+1

, monitored only while visiting Mk+1 and killed upon hitting Mk

(which is equivalent to the trace process leaving Bk+1). Note that this process is not the
same as (the trace of) the process killed when leaving Bk+1, meaning that taking the trace
and killing do not commute. Regardless of the precise definition of the probability measure
π̊
Bk+1

0 , Proposition 3.1 shows that

λk = 1−O(e−(H(k+1,Mk)−η)/σ2
) for k = 1, . . . , N − 1 , (3.7)

where η can be chosen as small as one likes. The main interest of this estimate is that the
spectral decomposition (2.26) becomes

kn(x, y) =
N−1∑
i=0

λni φi(x)πi(y) +O(ρn) , (3.8)

which is dominated by the N first terms as soon as n � log(ρ−1). Since the N first
eigenvalues are exponentially close to 1, the first N terms of the sum decrease very slowly,
highlighting the metastable behaviour of the system.

The proof of Theorem 3.2 relies on two main ingredients. In a first step, we show that
for each k 6 N − 1, the kernel of the process monitored only while visitingMk+1 can be
described by a finite-rank operator, given by a stochastic matrix P with elements

Pij = Pπ̊
Bi
0 {XτMk+1

∈ Bj} = Pπ̊
Bi
0 {τBj < τMk+1\Bj} . (3.9)

In a second step we use the metastable hierarchy assumption to show that the largest
eigenvalue of id−P is close to the indicated committor functions.
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If variant B of the confinement assumption (2.6) holds, then the following result shows
that Theorem 3.2 essentially holds also for the process killed upon leaving D. It can be seen
as a generalisation to the case N > 1 of the result in [50] by Wentzell, which estimates the
principal eigenvalue of the generator of a diffusion killed upon leaving a domain containing
a stable equilibrium point as sole attractor.

Proposition 3.3. The principal eigenvalue of the chain killed upon leaving D satisfies

λD0 = 1− Pπ̊
B1
0 {τ+

∂ < τ+
B1
}
[
1 +O(e−θ0/σ

2
)
]

= 1−O(e−V̄ (∂D)/σ2
) , (3.10)

where ∂ denotes the cemetery state, π̊B1
0 is a probability measure concentrated on B1 and

θ0 = infy∈∂D V (x?1, y)/2− η.

Proof: The proof is the same as the proof of Theorem 3.2, except that one adds a fictitious
ball B0 with zero boundary conditions, representing the cemetery state ∂.

Indeed, when using Proposition 2.10 to compute the eigenvalues of the killed process,
Condition (2.14) ensures that the corrections to the eigenvalues λ̄Dk are negligible for k =
1, . . . , N − 1.

3.2 Right eigenfunctions

For the spectral decomposition (3.8) to be useful, it is desirable to also have a control
on the N first right and left eigenfunctions. We start by giving a result on the right
eigenfunctions φk, which is close in spirit to [19, Theorem 1.3].

Theorem 3.4 (Right eigenfunctions). The N first right eigenfunctions of K can be taken
real. They satisfy φ0(x) = 1 for all x ∈ Σ, while for k = 1, . . . , N − 1,

φk(x) = Px
{
τBk+1

< τMk

}[
1 +O(e−θ

−/σ2
)
]

+O(e−θ
−
k /σ

2
) ∀x ∈ Σ , (3.11)

where θ−k = min{θ−, θk}. Furthermore, the right principal eigenfunction of the process
killed upon first hittingMk satisfies

φ
Mc

k
0 (x) = Px

{
τBk+1

< τMk

}[
1 +O(e−θ

−/σ2
)
]

+O(e−θ
−
k /σ

2
) ∀x ∈Mc

k (3.12)

for k = 1, . . . , N − 1.

If x is in the basin of attraction Ai of Bi, then the committor Px{τBi < τA} is expo-
nentially close to 1 whenever A is not in Ai. This shows that to leading order,

• if x ∈ Ai for 1 6 i 6 k, then φk(x) is exponentially small;
• if x ∈ Ak+1, then φk(x) is exponentially close to 1;
• if x ∈ Aj for j > k + 1, then φk(x) is exponentially close to 1 if it is easier to reach
Bk+1 thanMk from Bj , and exponentially small otherwise.

In the case where variant B of Assumption 2.6 holds, the following result together with
Proposition 2.10 show that the same expressions for eigenfunctions hold, except perhaps
close to the boundary of Σ.
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Remark 3.5. The proof actually yields a more precise estimate of the eigenfunctions, of
the form

φk(x) = Px
{
τBk+1

< τMk

}[
1 +O(e−θ

−/σ2
)
]

+
k∑
i=1

Px
{
τBi < τMk+1\Bi

}
ρki (3.13)

for 1 6 k 6 N − 1, where

ρki = −
Pπ̊

Bi
0
{
τ+
Bk+1

< τ+
Mk

}
Pπ̊

Bk+1
0

{
τ+
Mk

< τ+
Bk+1

} +O(e−2θ−/σ2
) = O(e−θ

−/σ2
) . (3.14)

Higher-order expansions are also available. This expression may contain more information
than (3.11) if the leading term in (3.11) is exponentially small. Note that at least some of
the coefficients ρki are negative, which is consistent with the orthogonality relation (2.24).

♦

Proposition 3.6. The principal eigenfunction of the chain killed upon leaving D satisfies

φD0 (x) = Px{τB1 < τ∂}
[
1 +O(e−θ

−/σ2
)
]

∀x ∈ Σ . (3.15)

Thus φD0 (x) = 1−O(e−θ
−/σ2

) whenever x is bounded away from ∂Σ.

3.3 Left eigenfunctions

If the kernel K were reversible, that is, if π0(x)k(x, y) = π0(y)k(y, x) were true for any
x, y ∈ Σ, then it would be immediate to obtain the left eigenfunctions. Indeed, it is
straightforward to check that they would be given by πk(x) = π0(x)φk(x). Since we do
not assume reversibility, we have to find another way to determine the left eigenfunctions.

In [13], the authors obtained that first-return times of finite-state space Markov chains
satisfy the remarkable identity π0(x)Px{τ+

y < τ+
x } = π0(y)Py{τ+

x < τ+
y }, even if the chain

is not reversible. The following result shows that a similar property holds in our case.
The proof which, arguably, is even more elementary than the one given in [13], is given in
Section 4.4.

Proposition 3.7. For any disjoint Borel sets A1, A2 ⊂ Σ one has∫
A1

π0(x)Px
{
τ+
A2
< τ+

A1

}
dx =

∫
A2

π0(x)Px
{
τ+
A1
< τ+

A2

}
dx . (3.16)

The same relation holds when each τ+
Ai

is replaced by the nth return time τ+,n
Ai

to Ai.

Applying this result with A1 =MN , A2 = Σ \MN , and using the fact that the Γi are
the only attractive limit sets, we obtain that π0 is concentrated inMN , in the sense that
there exists κ > 0, depending on the size δ of the Bi, such that

π0(Σ \MN )

π0(MN )
= O(e−κ/σ

2
) . (3.17)

Furthermore, for any compact Dj such that Bj ⊂ Dj ⊂ Aj , one has

π0(Dj \Bj)
π0(Dj)

= O(e−κ/σ
2
) (3.18)

where κ > 0 may depend on Dj . Similar bounds hold for the QSDs πM
c
k

0 and the other
left eigenfunctions. The essential information is thus contained in the integrals of these
measures over the sets Bj , which are described by the following result.
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Theorem 3.8 (Left eigenfunctions). The invariant distribution satisfies

π0(B1) = 1−O(e−κ/σ
2
) , π0(Bj) = O(e−θ

−/σ2
) for j = 2, . . . , N . (3.19)

Similarly, the QSDs πM
c
k

0 of the process killed upon first hittingMk satisfy

π
Mc

k
0 (Bk+1) = 1−O(e−κ/σ

2
) , π

Mc
k

0 (Bj) = O(e−κ/σ
2
) for j = k + 2, . . . , N . (3.20)

Furthermore, the left eigenfunction πk satisfies

πk(Bj) =


−
Pπ̊

Bk+1
0

{
τ+
Bj
< τ+
Mk+1\Bj

}
Pπ̊

Bk+1
0

{
τ+
Mk

< τ+
Bk+1

} [
1 +O(e−θ

−/σ2
)
]

+O(e−θk/σ
2
) for 1 6 j 6 k ,

π
Mc

k
0 (Bj)

[
1 +O(e−θ

−/σ2
)
]

+O(e−θj/σ
2
) for j > k + 1 .

(3.21)

This result shows in particular that

• πk(Bk+1) is exponentially close to 1;
• if k + 1 < j 6 N , then πk(Bj) is exponentially small;
• if 1 6 j 6 k, then πk(Bj) is negative, which is consistent with the orthogonality

relation (2.24); it can be close to −1 or exponentially small, depending on whether
Bj is the easiest ball inMk to reach from Bk+1 or not.

In the case where variant B of Assumption 2.6 holds, combining Propositions 3.6
and 2.10 it is immediate to see that the conclusions of Theorem 3.8 still hold true.

Remark 3.9. Using Proposition 3.7, either for the sets B1 and Bk+1 or for the setsMk

and Bk+1, one can obtain more precise estimates for the invariant distribution, namely the
relations

π0(Bk+1) =
Pπ̊

B1
0
{
τ+
Bk+1

< τ+
B1

}
Pπ̊

Bk+1
0

{
τ+
B1
< τ+

Bk+1

}[1 +O(e−θ
−/σ2

)
]
,

π0(Bk+1) =
k∑
j=1

π0(Bj)
Pπ̊

Bj
0
{
τ+
Bk+1

< τ+
Mk

}
Pπ̊

Bk+1
0

{
τ+
Mk

< τ+
Bk+1

}[1 +O(e−θ
−/σ2

)
]

(3.22)

which hold for 1 6 k 6 N − 1. The second expression, while more complicated, has the
merit of making it obvious that π0(Bk+1) = O(e−θ

−/σ2
), as a consequence of Assump-

tion 2.5.
Similar expressions hold for the Doob-conditioned distributions π̄M

c
k

0 , which immedi-
ately imply expressions for the QSDs via Proposition 2.10 and the expression (3.12) of the
right principal eigenfunctions. ♦

3.4 Link between eigenvalues and expected return times

If the initial condition is distributed according to πM
c
k

0 , then it follows directly from the
properties of QSDs that τMk

has a geometric distribution, with expectation

Eπ
Mc
k

0
{
τMk

}
=

1

1− λM
c
k

0

=
1 +O(e−θk/σ

2
)

1− λk
=

1 +O(e−θk/σ
2
)

Pπ̊
Bk+1
0

{
τ+
Mk

< τ+
Bk+1

} . (3.23)
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Combining this fact with the bounds we obtained on the QSDs πM
c
k

0 , it is not hard to
obtain the following link between expected hitting times and eigenvalues.

Theorem 3.10 (Expected hitting times). There exists a constant κ > 0, depending on the
size δ of the Bj, such that for every k ∈ {1, . . . , N − 1} one has, for any x ∈ Bk+1,

Ex
{
τMk

}
=

1 +O(e−κ/σ
2
)

1− λk
=

1 +O(e−κ/σ
2
)

Pπ̊
Bk+1
0

{
τ+
Mk

< τ+
Bk+1

} . (3.24)

3.5 Discussion of computational aspects

Our results provide sharp relations between eigenvalues and eigenfunctions of the random
Poincaré map, committor functions between and expected first-hitting times of neighbour-
hoods of periodic orbits, and principal eigenvalues, eigenfunctions and QSDs of processes
killed when hitting these sets. One limitation, compared to results in the reversible case,
is that we do not have sharp asymptotics for the prefactors of these quantities as in the
case of the Eyring–Kramers formula. However, some of them are accessible to numerical
methods.

Computing eigenvalues and eigenfunctions of a continuous-space linear operator by
discretisation is possible, but costly, especially in high space dimension. By contrast,
principal eigenvalues, eigenfunctions and QSDs are much cheaper to compute, since it is
sufficient to simulate the process conditioned on survival, starting with an arbitrary initial
distribution.

There also exist powerful methods allowing to compute committor functions in certain
situations, such as adaptive multilevel splitting, see for instance [23, 2, 20]. The fact
that the expressions (3.4) for eigenvalues depend on committors with respect to a QSD
is not a problem, since we find that the spectral gap of the associated process is at least
logarithmically large in σ, so that whatever the initial distribution, this QSD can be
sampled in a relatively short time.

4 Outline of the proof

As described in Section 2.4, in order to quantify transitions between periodic orbits, our
main objective is to solve the eigenvalue problem

(Kφ)(x) = e−u φ(x) (4.1)

for the discrete-time, continuous-state space kernel K. We will start by exhibiting some
general properties of this problem.

4.1 Continuous-space, discrete-time Markov chains

Let Σ ⊂ Rd be a bounded set equipped with the Borel σ-algebra B(Σ). Consider a positive
Harris recurrent discrete-time Markov chain (Xn)n>0 on the continuous state space Σ and
let K be the associated Markovian kernel having density k > 0 with respect to Lebesgue
measure, i.e.,

K(x,dy) = k(x, y) dy . (4.2)
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Given a Borel set A ⊂ Σ, we introduce the first hitting time and first return time

τA(x) = inf{n > 0, Xn ∈ A} ,
τ+
A (x) = inf{n > 1, Xn ∈ A} , (4.3)

where x denotes the initial condition. When the initial condition is clear from the context,
then we simply write τA, τ+

A . Note that τ+
A (x) = τA(x) for x ∈ Ac = Σ\A, whereas

0 = τA(x) < 1 6 τ+
A (x) if x ∈ A. If A has positive Lebesgue measure, due to the positive

Harris recurrence assumption on the Markov chain and the fact thatK has positive density,
the stopping times τA and τ+

A are almost surely finite. To ease notation, we introduce

EA{·} = sup
x∈A

Ex{·} , PA{·} = sup
x∈A

Px{·} (4.4)

We also introduce the nth return time defined inductively by

τ+,n
A = inf

{
n > τ+,n−1

A : Xn ∈ A
}
, (4.5)

with τ+,1
A = τ+

A .
We recall the following result on existence of Laplace transforms, see e.g. [9, Lemma 5.1].

Lemma 4.1. Consider a positive recurrent Markov chain with state space Σ. The Laplace
transform of the first hitting time Ex

{
euτA

}
and the Laplace transform of the first return

time Ex
{

euτ
+
A

}
are analytic in u for u such that

sup
x∈Ac

Px{X1 ∈ Ac} <
∣∣e−u∣∣ . (4.6)

Following ideas from the potential-theoretic approach to metastability [18, 19], we are
going to study a Dirichlet boundary value problem to solve the eigenvalue problem. Given
a set A ⊂ Σ, u ∈ C and a bounded measurable function φ : A → R, we want to find a
(bounded) function φu which satisfies

(Kφu)(x) = e−u φu(x), x ∈ Ac ,
φu(x) = φ(x), x ∈ A . (4.7)

Solutions of such a Dirichlet problem admit a probabilistic representation in terms of
Laplace transforms.

Proposition 4.2 (Feynman–Kac type relation). For u such that (4.6) is satisfied, the
unique solution of the Dirichlet boundary value problem (4.7) is given by

φu(x) = Ex
{

euτA φ(XτA)
}
. (4.8)

Proof: First, let us check that the proposed function solves the boundary problem. This
is obvious for x ∈ A, since in that case τA = 0, so that Ex

{
euτA φ(XτA)

}
= φ(x). For

x ∈ Ac, splitting the expectation defining (Kφu)(x) according to the location of X1, we
get

(Kφu)(x) = Ex
{
EX1

{
euτA φ(XτA)

}
1{X1∈A}

}
+ Ex

{
EX1

{
euτA φ(XτA)

}
1{X1∈Ac}

}
= Ex

{
φ(X1)1{X1∈A}

}
+ Ex

{
eu(τA−1) φ(XτA)1{X1∈Ac}

}
= e−u Ex

{
euτA φ(XτA)

}
. (4.9)
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This shows that Ex
{

euτA φ(XτA)
}

is an admissible solution for all x ∈ Σ. Uniqueness
follows from the Fredholm alternative. Let us assume by contradiction that two functions
f and g solve the Dirichlet boundary value problem with f 6= g. Then

((id− euK)(f − g))(x) = 0 , x ∈ Ac ,
(f − g)(x) = 0 , x ∈ A . (4.10)

The contradiction comes from the fact that under Condition (4.6), ‖euKAc‖ < 1, so that
we can apply [35, Theorem 8.1]. In particular (id− euKAc) is invertible and f ≡ g.

The solution of the boundary value problem (4.7) allows us to define a (non Markov)
kernel on A.

Corollary 4.3. Let Ku be the kernel defined on A× B(A) by

Ku(x, dy) = Ex
{

eu(τ
+
A−1) 1{

X
τ+
A
∈dy
}} . (4.11)

For u verifying (4.6), the eigenvalue problem on Σ

(Kφu)(x) = e−u φu(x) (4.12)

is equivalent to the eigenvalue problem on A given by(
Kuφ

u)
(x) = e−u φ

u
(x) (4.13)

where φu(x) = φu(x) for all x ∈ A.

Proof: Let (e−u, φu) be a couple of eigenvalue, eigenfunction for the Markov kernel K.
Then splitting the integral equation according to X1 and inserting the previous solution
in the second term of the right-hand side, we have

e−u φu(x) = (Kφu)(x) = Ex
{
φu(X1)1{X1∈A}

}
+ Ex

{
φu(X1)1{X1∈Ac}

}
= Ex

{
φu(Xτ+

A
)1{τ+

A=1}
}

+ Ex
{
EX1{euτA φu(XτA)}1{τ+

A>1}
}

= Ex
{

eu(τ+
A−1) φu(Xτ+

A
)1{τ+

A=1}
}

+ Ex
{

eu(τ
+
A−1) φu(Xτ+

A
)1{τ+

A>1}
}

= Ex
{

eu(τ+
A−1) φu(Xτ+

A
)
}

= (Kuφu)(x) . (4.14)

Since for x ∈ A, we have φu(x) = φ
u
(x), this proves that (4.13) holds.

On the other hand, if we know a couple (e−u, φ
u
) of eigenvalue and eigenfunction for

the kernel Ku, we introduce the function

φu(x) = Ex
{

euτA φ
u
(XτA)

}
. (4.15)

Note that φu(x) = φ
u
(x) for x ∈ A. By the previous proposition, φu satisfies the eigenvalue

equation with eigenvalue e−u.

In the sequel, we will forget the notation φ since φu = φu x∈A.
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MN
MN−1

Re(λ)

Im(λ)

Figure 4: Set of possible eigenvalues λ for the eigenvalue problems defined on MN and
MN−1.

4.2 Choice of the set to reduce the eigenvalue problem

Thanks to Theorem 4.3, we have reduced the eigenvalue problem on Σ to an eigenvalue
problem on a subset A of Σ, which has yet to be defined. We now discuss the choice of A.
Under the metastable hierarchy assumption 2.5, we expect that there will be N eigenvalues
exponentially close to one, and a gap between the N th eigenvalue and the remaining part
of the spectrum (we recall that eigenvalues are ordered by decreasing modulus).

The general idea of the proof is to first choose a set A which is well suited to estimating
λN−1, the N th eigenvalue of the kernel, and also to obtain a rough estimate of the N − 1
largest eigenvalues. Then we take another set A in order to estimate λN−2, and obtain a
rough estimate of theN−2 largest eigenvalues, and so on up to λ1. The way to estimate one
of the N largest eigenvalues is based on approximations of the kernel Ku and is explained
is the next subsection.

To estimate the N th eigenvalue, we are going to choose A :=MN . Note that intuitively
for such a choice of set, (4.6) is not restrictive. Indeed, due to the attraction ofMN , starting
outside the union of the neighbourhoods of the stable periodic orbits, the probability that
the first return point is still outside this neighbourhood should be very small (possibly
replacing K by a suitable iterate Km). So this should allow us to estimate the N th

eigenvalue of the kernel Ku.
Next, to estimate the (N − 1)st eigenvalue λN−2, we will study the eigenvalue problem

on A :=MN−1. It follows that for all u such that

sup
x∈Mc

N−1

Px
{
X1 ∈Mc

N−1

}
<
∣∣e−u∣∣ , (4.16)

the original eigenvalue problem (4.1) is equivalent to an eigenvalue problem on MN−1.
Note that the Laplace transform conditions given by (4.6) satisfies

sup
x∈Mc

N

Px{X1 ∈Mc
N} < sup

x∈Mc
N−1

Px
{
X1 ∈Mc

N−1

}
. (4.17)

Therefore when solving the eigenvalue equation defined on MN−1 with kernel Ku,(N−1)

we find eigenvalues which are greater in modulus than the eigenvalues of the kernel Ku,(N)

defined onMN .
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In general, to estimate the kth eigenvalue, we will study the eigenvalue problem (4.7)
with A =Mk+1. Therefore we have to study the spectral properties of the kernel Ku,(k+1)

defined onMk+1 by

Ku,(k+1)(x,dy) = Ex
{

e
u(τ+
Mk+1

−1)
1{

X
τ+
Mk+1

∈dy
}} . (4.18)

To ease notation, we will simply write Ku and keep in mind that the kernel depends on k
through its domain of definition.

4.3 Eigenvalue problem on a union of metastable sets

Reducing our eigenvalue problem on Mk+1 is convenient because the kernel is defined
where we expect to have information from the deterministic part of the system due to the
attraction of the stable periodic orbits. However, the introduced kernel does not have a nice
probabilistic interpretation since it depends on the spectral parameter u. To circumvent
this problem, we are going to introduce a new parameter v and solve the system of two
coupled equations

(Kuφu)(x) = vφu(x)

v = e−u . (4.19)

In addition, instead of studying the kernel Ku (or its iterate (Ku)m), we are going to
approximate it by a kernel having a nicer probabilistic interpretation and for which we can
easily obtain the spectrum. The justification for using such an approximation is given by
the continuity of eigenvalues of bounded linear operators [35]. Indeed, let K? : Y → Y be
a bounded linear operator acting on the Banach space Y . The following classical theorem
describes what happens to parts of the spectrum σ(K?) if the operator K? is subjected to
a small perturbation.

Proposition 4.4 ([35, Proposition 4.2]). Let σ be a finite set of eigenvalues of finite type
of K?, and let C be a contour around σ which separates σ from σ(K?)\σ. Then there exists
ε > 0 such that for any operator Ku on X with ‖K? −Ku‖ < ε the following holds true:
σ(Ku)∩C = ∅, the part of σ(Ku) inside C is a finite set of eigenvalues of finite type and, if
we denote m(λ;K) the algebraic multiplicity of the eigenvalue λ for the operator K, then∑

λ inside C
m(λ;Ku) =

∑
λ inside C

m(λ;K?) . (4.20)

The theory also provides bounds on ε, cf. Section 7 for details.
Two approximations are going to be made. Firstly, because we are looking for eigen-

values of Ku that are close to 1, i.e. u close to zero, we can compare the kernels Ku and
K0. Note that K0 is a Markov kernel defined onMk+1 × B(Mk+1) and given by

K0(x,dy) = Px
{
Xτ+
Mk+1

∈ dy
}
. (4.21)

This is exactly the kernel of the trace process X|Mk+1
introduced in Section 2.6. For the

second approximation, we introduce the kernel K? given by

K?(x, dy) =
k+1∑
i=1

1{x∈Bi}

∫
Bi

π̊Bi0 (z) K0(z,dy) dz (4.22)
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where π̊Bi0 is the quasistationary distribution of the process described by the kernel K0
Bi

(see Section 2.5). Note that the kernel K? is of finite rank, since it is a finite sum of
products of two functions, one of which depends on its first argument only.

In order to obtain sharper estimates, instead of considering the Markov chain at each
return time to the setMk+1 on the Poincaré map, we will study the diluted chain given by
themth iterate of the kernel, wheremmay depend on σ. It is clear that e−u is an eigenvalue
of Ku if and only if e−um is an eigenvalue of the kernel (Ku)m. We also introduce the
m-fold iterates (K0)m and (K?)m.

We will prove in Section 6.1 the following bound on the norm of the difference between
(Ku)m and (K0)m.

Proposition 4.5 (Proposition 6.6). For all real u verifying the Laplace condition given by
(4.6) with A =Mk+1, and such that (1− e−u)EM

c
k+1
{
τ+
Mk+1

}
< 1, we have

‖(Ku)m −
(
K0
)
m‖ 6

(
1 +

(1− e−u)EMk+1
{
τ+
Mk+1

− 1
}

1− (1− e−u)EM
c
k+1
{
τ+
Mk+1

})m − 1 . (4.23)

The expectations appearing in this bound will be estimated in Section 8. We will also
obtain in Section 6.2 the following bound on the norm of the difference between (K0)m

and (K?)m.

Proposition 4.6 (Proposition 6.7). For all m ∈ N, the norm of the difference between the
iterates of K0 and K? satisfies the bound

‖
(
K0
)
m − (K?)m‖ 6 sup

16i6k+1
Ri , (4.24)

where

Ri = ‖φ̊Bi0 − 1‖+ 2(̊λBi1 )m + 2
1− (̊λBi1 )m

1− λ̊Bi1

PBi
{
τ+
Mk+1\Bi < τ+

Bi

}
+m(m− 1)PBi

{
τ+
Mk+1\Bi < τ+

Bi

}
PMk+1\Bi

{
τ+
Bi
< τ+
Mk+1\Bi

}
. (4.25)

The quantities λ̊Bik and φ̊Bi0 appearing in this estimate are related to the trace process
K0
Bi

killed upon leaving Bi. In Section 5, we will derive bounds on the oscillation of the
principal eigenfunction φ̊Bi0 and the spectral gap |̊λBi1 |/̊λ

Bi
0 . Together with the metastable

hierarchy assumption, these bounds show that ‖
(
K0
)
m − (K?)m‖ is small for all m such

that
mPBk+1

{
τ+
Mk

< τ+
Bk+1

}
� 1 . (4.26)

The difference (Ku)m −
(
K0
)
m is also small under this condition.

Thanks to these approximations, we have reduced our eigenvalue problem to a much
simpler one. Since the kernel (K?)m is of finite rank, it admits exactly N eigenvalues.
Furthermore, solving the eigenvalue problem for (K?)m is now equivalent to solving a
system of linear algebraic equations.

Proposition 4.7 (Theorem 7.5). For 0 6 i 6 k, we denote by λ?i the eigenvalues of
K? labelled by decreasing order. The smallest eigenvalue λ?k of K? is real and simple. It
satisfies∣∣∣∣λ?k − (1− Pπ̊

Bk+1
0

{
Xτ+
Mk+1

∈Mk

})∣∣∣∣ 6 2 max
16l6k

Pπ̊
Bl
0

{
Xτ+
Mk+1

∈Mk+1\Bl
}
. (4.27)
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The k remaining eigenvalues satisfy for all 0 6 i < k

|1− λ?i | 6 4 max
16l6k

Pπ̊
Bl
0

{
Xτ+
Mk+1

∈Mk+1\Bl
}
. (4.28)

Theorem 3.2 then follows essentially by combining the estimate (4.27) with the bound
on ‖(Ku)m − (K?)m‖ implied by the two previous propositions, for an appropriate choice
of m. Details are given in Section 9.

4.4 Computation of eigenfunctions

Once eigenvalues have been estimated, determining the associated left and right eigen-
functions is relatively easy. The expressions for right eigenfunctions φk are essentially
consequences of the Feynman–Kac representation given in Proposition 4.2. As for the left
eigenfunctions, a crucial tool is the following result.

Lemma 4.8. For any left eigenfunction πk of the kernel K associated to the eigenvalue
e−uk , and for any B ⊂ A ⊂ Σ, we have∫

A
πk(x)Kuk(x,B) dx :=

∫
A
πk(x)Ex

{
euk(τ+

A−1) 1{τ+
B<τ

+
A\B}

}
dx = e−uk πk(B) . (4.29)

Proof: Consider the function hu(x) = Ex
{

euτA 1{τB<τA\B}
}
. Note that hu(x) = 1{x∈B}

whenever x ∈ A, while a similar argument as in Proposition 4.2 yields

(Khu)(x) = Ex
{
hu(X1)

}
= Ku(x,B) . (4.30)

It follows that∫
A
πk(x)Kuk(x,B) dx =

∫
Σ
πk(x)(Khuk)(x) dx−

∫
Σ\A

πk(x)Kuk(x,B) dx

= e−uk
∫

Σ
πk(x)huk(x) dx− e−uk

∫
Σ\A

πk(x)huk(x) dx

= e−uk
∫
A
πk(x)1{x∈B} dx = e−uk πk(B) . (4.31)

In the second line, we have used the eigenvalue equation πkK = e−uk πk and the fact that
in Σ\A, τA = τ+

A and τB = τ+
B , and thus Ku(x,B) = e−u hu(x).

Proof of Proposition 3.7. Applying (4.29) for the left eigenfunction π0 associated to
the eigenvalue 1 and with any disjoint A1, A2 such that A1 ∪A2 = A, we have

π0(A1) =

∫
A1∪A2

π0(x)Px
{
τ+
A1
< τ+

A2

}
dx. (4.32)

Decomposing the domain of the integral into A1 and A2, and using the fact that for all x,
Px
{
τ+
A1
< τ+

A2

}
= 1− Px

{
τ+
A2
< τ+

A1

}
, we immediately get the result.
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5 Spectral properties of K0
Bi

Recall that we have denoted K? the kernel onMk × B(Mk) defined by

K?(x,dy) =
k∑
i=1

1{x∈Bi}

∫
Bi

π̊Bi0 (z)Pz
{
Xτ+
Mk

∈ dy
}

dz , (5.1)

where π̊Bi0 is the quasistationary distribution of the process described by the kernel K0
Bi
.

Also recall that K0
Bi

is the kernel associated to the trace process (Xn)|Mk
killed upon

leaving Bi. To remind us that we are not looking at the process described by the kernel
defined on Σ but at the process(

Xn|Mk

)
n>0

=
(
Xτ+,n
Mk

)
n>0

, (5.2)

i.e., the trace of the original process at the return times to Mk =
⋃k
i=1Bi, we use the

symbol .̊ Since we study the killed process, we also follow the notations introduced in
Section 2.5, by denoting its eigenvalues by λ̊Bij and its left and right eigenfunctions by
π̊Bij (x) and φ̊Bij (x) respectively. The principal eigenvalue λ̊Bi0 of this kernel is given by

λ̊Bi0 = Pπ̊
Bi
0

{
τ+
Bi
< τ+
Mk\Bi

}
. (5.3)

Using the spectral decomposition, we can introduce the function g(x, y) such that the
density of K0

Bi
satisfies

k0
Bi(x, y) = λ̊Bi0

{
π̊Bi0 (y)φ̊Bi0 (x) +

λ̊Bi1

λ̊Bi0

g(x, y)

}
. (5.4)

Note that due to orthogonality of eigenfunctions (see (2.24)),∫
Bi

g(x, y)φ̊Bi0 (y) dy = 0 ,

∫
Bi

π̊Bi0 (x)g(x, y) dx = 0 . (5.5)

It follows that(
k0
Bi

)
m(x, y) =

(̊
λBi0

)m{
π̊Bi0 (y)φ̊Bi0 (x) +

(
λ̊Bi1

λ̊Bi0

)m
gm(x, y)

}
. (5.6)

In addition g has spectral radius 1.

5.1 Spectral gap estimate

Proposition 5.1 (Adapted from [9, Proposition 5.5]). Assume that for some n ∈ N, the
density of the n-fold iterated kernel

(
k0
Bi

)n satisfies a uniform positivity condition, i.e.,
there exists L(n) > 1 such that

inf
x0∈Bi

(k0
Bi)

n(x0, y) 6 (k0
Bi)

n(x, y) 6 L(n) inf
x0∈Bi

(k0
Bi)

n(x0, y) ∀x, y ∈ Bi . (5.7)

Then θ = |̊λ1|/̊λ0 satisfies

θn 6 L(n)−
inf
x∈Bi

Px
{
τ+,n
Bi

< τ+
Mk\Bi

}
(̊
λBi0

)n . (5.8)
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Proof: To ease notation, we prove the result for n = 1, but one can show that it is still
true for all n > 2. For any l > 1, the eigenvalue equation for λ̊Bil and the orthogonality
relation (2.24) of the eigenfunctions φ̊Bil and π̊Bil give

λ̊Bil φ̊
Bi
l (x) =

∫
Bi

k0
Bi(x, y)φ̊Bil (y) dy ,

0 =

∫
Bi

π̊Bi0 (y)φ̊Bil (y) dy . (5.9)

For any κ > 0, we thus obtain

λ̊Bil φ̊
Bi
l (x) =

∫
Bi

[
k0
Bi(x, y)− κπ̊Bi0 (y)

]
φ̊Bil (y) dy . (5.10)

Let us denote by x0 the point in Bi where φ̊Bil (y) reaches its supremum. Evaluating the
last equation in x0 we obtain∣∣̊λBil ∣∣ 6 ∫

Bi

∣∣∣k0
Bi(x0, y)− κπ̊Bi0 (y)

∣∣∣dy . (5.11)

Remark that for all y ∈ Bi,

λ̊Bi0 π̊Bi0 (y) =

∫
Bi

π̊Bi0 (x)k0
Bi(x, y) dx > inf

x∈Bi
k0
Bi(x, y) . (5.12)

Taking κ = λ̊Bi0 L(1), we can remove the absolute value and write

∣∣̊λBil ∣∣ 6 ∫
Bi

[̊
λBi0 L(1)̊πBi0 (y)− inf

x∈Bi
k0
Bi(x, y)

]
dy

= λ̊Bi0 L(1)− inf
x∈Bi

Px
{
τ+
Bi
< τ+
Mk\Bi

}
, (5.13)

which proves (5.8) for n = 1.

The two following results based on Harnack inequalities [33] will enable us to prove
that n and L(n) satisfying the uniform positivity condition (5.7) exist.

Lemma 5.2 ([9, Lemma 5.7]). For any set D1 such that its closure satisfies D̄1 ⊂ D, there
exists a constant C, independent of σ, such that

sup
x∈D1

k0
Bi

(x, y)

inf
x∈D1

k0
Bi

(x, y)
6 eC/σ

2
(5.14)

for all y ∈ ∂D.

Lemma 5.3 ([9, Lemma 5.8]). Let Br(x) denote the ball of radius r centred in x, and let
D1 be such that its closure satisfies D̄1 ⊂ D. Then for any x0 ∈ D1, y ∈ ∂D, and η > 0,
one can find a constant r = r(y, η), independent of σ, such that

sup
x∈Brσ2 (x0)

k0
Bi(x, y) 6 (1 + η) inf

x∈Brσ2 (x0)
k0
Bi(x, y) . (5.15)
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Proposition 5.4. For x1, x2 ∈ Bi, define the integer stopping time

N = N(x1, x2) = inf
{
n > 1 :

∣∣∣X̂x2
n − X̂x1

n

∣∣∣ 6 rησ2
}
, (5.16)

where X̂x0
n denotes the Markov chain with transition kernel K0

Bi
(x0,dy)/K0

Bi
(x0, Bi) (i.e.

the Markov chain conditioned to stay in Bi) and initial condition x0, and rη is the constant
of Lemma 5.3. Let

ρn = sup
x1,x2∈Bi

P{N(x1, x2) > n} . (5.17)

Then for any n > 2, and any η > 0, the transition kernel (K0
Bi

)
n
(x,dy) fulfils a uniform

positivity condition with constant L(n) satisfying

L(n) 6
1 + η + ρn−1 eC/σ

2

inf
x∈Bi

Px
{
τ+,n
Bi

< τ+
Mk\Bi

} , (5.18)

where C does not depend on σ.

Proof: Thanks to [9, Proposition 5.9], we obtain that

sup
x∈Bi

(k0
Bi

)n(x, y)

(K0
Bi

)n(x,Bi)
6 inf

x∈Bi

(k0
Bi

)n(x, y)

(K0
Bi

)n(x,Bi)

(
1 + η + ρn−1 eC/σ

2
)

∀y ∈ Bi . (5.19)

The result is then immediate.

5.2 Oscillations of the principal right eigenfunction

Proposition 5.5. Assume that (k0
Bi

)n satisfies the uniform positivity condition (5.7) for
some n ∈ N. Then there exists M > 0, such that the normalised principal right eigenfunc-
tion of K0

Bi
satisfies

‖φ̊Bi0 − 1‖ 6ML(n)2 sup
x∈Bi

∣∣∣∣∣∣1−
Px
{
τ+,n
Bi

< τ+
Mk\Bi

}
(̊
λBi0

)n
∣∣∣∣∣∣ . (5.20)

Proof: The uniform positivity condition implies that we can apply [15, Theorem 3,
Lemma 3], which tells us that for any bounded measurable function f : Bi → R, there
exists a constant M(f) such that for all m ∈ N,

‖(K0
Bi)

nm
f − (̊λBi0 )nm(̊πBi0 f)φ̊Bi0 ‖ 6M(f)%m(̊λBi0 )nm‖φ̊Bi0 ‖ , (5.21)

where % < 1. Inspecting the proofs in [15] shows that % satisfies % 6 1− 1/L(n)2. Taking
f(x) = 1, it follows that∣∣(K0

Bi)
nm(x,Bi)− (̊λBi0 )nmφ̊Bi0 (x)

∣∣ 6M(1)%m(̊λBi0 )nm‖φ̊Bi0 ‖ . (5.22)

Dividing by (̊λBi0 )nm and using the spectral decomposition (5.6), we get∣∣∣∣∣
∫
Bi

(
λ̊Bi1

λ̊Bi0

)nm
gnm(x, y) dy

∣∣∣∣∣ =

∣∣∣∣∣(K0
Bi

)nm(x,Bi)(̊
λBi0

)nm − φ̊Bi0 (x)

∣∣∣∣∣ 6M(1)%m‖φ̊Bi0 ‖ . (5.23)
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Since % < 1, taking the limit m→∞, we obtain

φ̊Bi0 (x) = lim
m→∞

(K0
Bi

)nm(x,Bi)(̊
λBi0

)nm = lim
m→∞

Px
{
τ+,nm
Bi

< τ+
Mk\Bi

}
(̊
λBi0

)nm . (5.24)

Let (hm)m>0 be the sequence of bounded measurable functions in Bi defined by h0 = 1,
and

hm+1(x) =
1(̊

λBi0

)n ∫
Bi

(k0
Bi)

n(x, y)hm(y) dy , (5.25)

so that for all m

hm(x) =
(K0

Bi
)nm(x,Bi)(̊
λBi0

)nm . (5.26)

We can now use a telescopic series to estimate

1− φ̊Bi0 (x) = h0(x)− lim
m→∞

hm(x)

=

∞∑
m=0

[
hm(x)− hm+1(x)

]
=
∞∑
m=0

∫
Bi

(k0
Bi

)
nm

(x, y)(̊
λBi0

)nm [
h0 − h1(y)

]
dy . (5.27)

Since
∫
Bi

π̊Bi0 (x)
[
h0 − h1(x)

]
dx = 0, the spectral decomposition (5.6) and (5.23) yield

‖1− φ̊Bi0 ‖ 6 sup
x∈Bi

∞∑
m=0

∣∣∣∣∣
∫
Bi

(
λ̊Bi1

λ̊Bi0

)nm
gnm(x, y) dy

∣∣∣∣∣ ‖h0 − h1‖

6
∞∑
m=0

M(1)%m‖φ̊Bi0 ‖‖h0 − h1‖ . (5.28)

Since
∑

m %
m 6 L(n)2 and h1(x) = (̊λBi0 )−n(K0

Bi
)n(x,Bi), the result follows.

6 Estimates on operators norms

The aim of this section is to show that the kernel Ku (or its m-fold iterates) defined on
Mk by

Ku(x,dy) = Ex
{

e
u(τ+
Mk
−1)

1{
X
τ+
Mk

∈dy
}} , (6.1)

can be approximated by a finite-rank operator K? (or its m-fold iterates) given by

K?(x,dy) =
k∑
i=1

1{x∈Bi}

∫
Bi

π̊Bi0 (x0) K0(x0, dy) dx0 . (6.2)

We will first compare Ku to K0, and then compare K0 to K? (and similarly for their
iterates).
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6.1 Comparison between Ku, K0 and their m-fold iterates

Note that the difference between Ku and K0 is given by

(
Ku −K0

)
(x,dy) = Ex

{(
e
u(τ+
Mk
−1)−1

)
1{

X
τ+
Mk

∈dy
}} . (6.3)

The following proposition enables us to bound the norm of this difference.

Proposition 6.1. For all real u verifying the Laplace condition given by (4.6) with A =
Mk, and such that (1− e−u)EMc

k

{
τ+
Mk

}
< 1, we have

‖Ku −K0‖ 6
(1− e−u)EMk

{
τ+
Mk
− 1
}

1− (1− e−u)EMc
k

{
τ+
Mk

} . (6.4)

Remark 6.2. Note that for real u, the two conditions on u can be summarised as follows:

max

(
PM

c
k
{
X1 ∈Mc

k

}
,
EMc

k

{
τ+
Mk

}
− 1

EMc
k

{
τ+
Mk

} )
< e−u . (6.5)

♦

To prove this proposition, we will use the following expression for the inverse of
(id−KAc) (which is its resolvent at z = 1).

Lemma 6.3. Assume that there is a set A ⊂ Σ such that

sup
x∈Ac

Px{X1 ∈ Ac} < 1 . (6.6)

Then the unique solution of the boundary value problem

((id−K)r)(x) = g(x), x ∈ Ac ,
r(x) = 0, x ∈ A , (6.7)

is given by

r(x) = Ex
{
τA−1∑
n=0

g(Xn)

}
(6.8)

where by convention, the empty sum equals zero.

Proof: First, let us check that the proposed function solves the boundary value problem.
This is obvious for x ∈ A, since in that case, with the convention taken for the empty sum,
Ex
{∑τA−1

n=0 g(Xn)
}

= 0. For x ∈ Ac,

((id−K)r)(x) = Ex
{
τA−1∑
n=0

g(Xn)

}
− Ex

{
EX1

{
τA−1∑
n=0

g(Xn)

}}
. (6.9)
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We can split the expectations according to the location of X1, and use the strong Markov
property, to obtain

((id−K)r)(x)

= Ex
{
1{X1∈A}g(x)

}
+ Ex

{
1{X1∈Ac}

τA−1∑
n=0

g(Xn)

}
− Ex

{
1{X1∈Ac}E

X1

{
τA−1∑
n=0

g(Xn)

}}

= Ex
{
1{X1∈A}g(x)

}
+ Ex

{
1{X1∈Ac}

τA−1∑
n=0

g(Xn)

}
− Ex

{
1{X1∈Ac}

τA−1∑
n=1

g(Xn)

}
= g(x) . (6.10)

This shows that we have an admissible solution for all x ∈ Σ.
Uniqueness is a consequence of the Fredholm alternative. Indeed, since

‖KAc‖ 6 sup
x∈Ac

Px{X1 ∈ Ac} < 1 , (6.11)

we can apply [35, Theorem 8.1]. In particular, (id−KAc) is invertible.

Remark 6.4. For A =Mk, since

‖KMc
k
‖ 6 sup

x∈Mc
k

Px{X1 ∈Mc
k} < 1 , (6.12)

the assumption of Lemma 6.3 is satisfied. ♦

Proof of Proposition 6.1. Note that

‖Ku −K0‖ 6 sup
x∈Mk

Ex
{

e
u(τ+
Mk
−1)−1

}
. (6.13)

Let us assume that this maximum is obtained for x̄ ∈ Mk. Recognizing the sum of terms
of a geometric sequence, we obtain

Ex̄
{

e
u(τ+
Mk
−1)−1

}
=
(
1− e−u

)
Ex̄
{τ+
Mk
−1∑

n=1

eun

}

=
(
1− e−u

)
Ex̄
{τ+
Mk
−1∑

n=1

e
u(τ+
Mk
−n)

}

=
(
1− e−u

)
Ex̄
{τ+
Mk
−1∑

n=1

EXn{euτMk}

}
. (6.14)

We thus get
‖Ku −K0‖ 6

(
1− e−u

)
EMk

{
τ+
Mk
− 1
}
EM

c
k
{

euτMk

}
. (6.15)

Let us now bound the expected value starting fromMc
k. Note that r(x) = Ex{euτMk} − 1

solves the boundary value problem

((id−K)r)(x) =
(
1− e−u

)
Ex{euτMk} x ∈Mc

k ,

r(x) = 0 x ∈Mk . (6.16)
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Thanks to Lemma 6.3, we have

r(x) = Ex{euτMk} − 1 =
(
1− e−u

)
Ex
{τMk

−1∑
n=0

EXn
{

euτMk

}}
. (6.17)

Introducing M = EMc
k{euτMk}, and taking the supremum for x ∈Mc

k in (6.17), we obtain

M − 1 6
(
1− e−u

)
EM

c
k
{
τ+
Mk

}
M . (6.18)

Thus if (1− e−u)EMc
k

{
τ+
Mk

}
< 1, we have

M = EM
c
k
{

euτMk

}
6

1

1− (1− e−u)EMc
k

{
τ+
Mk

} , (6.19)

which gives the result.

Remark 6.5. Note that in the previous proof, we have obtained the bound

EMk

{τ+
Mk
−1∑

n=1

eun

}
6

EMk
{
τ+
Mk
− 1
}

1− (1− e−u)EMc
k

{
τ+
Mk

} . (6.20)

♦

We are now going to bound the supremum norm of the difference between the iterates
of these two kernels. We recall that we want to prove

Proposition 6.6. For all real u verifying the Laplace condition given by (4.6) with A =
Mk, and such that (1− e−u)EMc

k

{
τ+
Mk

}
< 1, we have

‖(Ku)m −
(
K0
)
m‖ 6

(
1 +

(1− e−u)EMk
{
τ+
Mk
− 1
}

1− (1− e−u)EMc
k

{
τ+
Mk

})m − 1 . (6.21)

Proof: To ease notation, we introduce τ+
m = τ+,m

Mk
for the mth return time toMk. Note

that the mth iterated kernel of Ku is given by

(Ku)m(x,dy) = Ex
{

eu(τ+
m−m) 1{

X
τ+
m
∈dy
}} . (6.22)

Therefore, the norm of the difference between the iterates of Ku and K0 satisfies

‖(Ku)m −
(
K0
)
m‖ 6 sup

x∈Mk

Ex
{

eu(τ+
m−m)−1

}
. (6.23)

As previously, recognizing the sum of terms of a geometric sequence, we can bound the
norm by

‖(Ku)m −
(
K0
)
m‖ 6

(
1− e−u

)
sup
x∈Mk

Ex
{
τ+
m−m∑
n=1

eun

}
. (6.24)

We can now split the expected value of the sum as follows:

Ex
{
τ+
m−m∑
n=1

eun

}
= Ex

{τ+
1 −1∑
n=1

eun

}
+ Ex

{
τ+
m−m∑
n=τ+

1

eun

}
. (6.25)
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Using the strong Markov property for the second term on the right-hand side we get

Ex
{
τ+
m−m∑
n=1

eun

}
= Ex

{τ+
1 −1∑
n=1

eun

}
+ Ex

{
eu(τ

+
1 −1) E

X
τ+
1

{τ+
m−1−(m−1)∑

n=1

eun

}}
. (6.26)

Denoting for all m ∈ N

tm = EMk


τ+
m−m∑
n=1

eun

 , (6.27)

we obtain the induction relation

tm 6 t1 + tm−1

(
1 +

(
1− e−u

)
t1
)
. (6.28)

Thus, the general term can be bounded by

tm 6
(1 + (1− e−u)t1)m − 1

1− e−u
. (6.29)

Using the bound found in (6.20) for t1, it follows that

EMk

{
τ+
m−m∑
n=1

eun

}
6

(
1 + (1− e−u)EMk

{τ+
1 −1∑
n=1

eun

})m
− 1

1− e−u
, (6.30)

which gives the result.

6.2 Comparison between K0, K? and their m-fold iterates

The aim of this section is to prove the following proposition:

Proposition 6.7. For all m ∈ N, the norm of the difference between the iterates of K0

and K? satisfies the bound

‖
(
K0
)
m − (K?)m‖ 6 sup

16i6k
Ri , (6.31)

where

Ri = ‖φ̊Bi0 − 1‖+ 2
∣∣̊λBi1

∣∣m + 2
1−

∣∣̊λBi1

∣∣m
1−

∣∣̊λBi1

∣∣ PBi{τ+
Mk\Bi < τ+

Bi

}
+m(m− 1)PBi

{
τ+
Mk\Bi < τ+

Bi

}
PMk\Bi

{
τ+
Bi
< τ+
Mk\Bi

}
. (6.32)

Proof: Let us first introduce the kernel (Ǩ)m with density

(ǩ)m(x, y) =

k∑
i=1

1{x∈Bi}(ǩi)
m(x, y) (6.33)

where for any x ∈ Bi

(ǩi)
m(x, y) = (k0

Bi)
m

(x, y)

+

m−1∑
j=0

∫
Mk\Bi

∫
Bi

(k0
Bi)

l
(x, z1)k0(z1, z2)(k0

Mk\Bi)
m−l−1

(z2, y) dz1 dz2 . (6.34)
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Note that this kernel describes the process living on Mk which can only perform one
transition, i.e., starting in Bi the Markov chain either stays in Bi or makes an excursion
toMk\Bi and stays in this set. We introduce the notation

∆m =

∫
Mk

[
(k0)

m
(x, y)− (ǩ)m(x, y)

]
dy . (6.35)

We claim that for any x ∈ Bi, for all m > 1

∆m 6
1

2
m(m− 1)PBi

{
Xτ+
Mk

/∈ Bi
}
PMk\Bi

{
Xτ+
Mk

∈ Bi
}
. (6.36)

Let us prove this claim by induction. Since k0(x, y) = ǩ(x, y) the base case is verified. The
induction step is based on counting the possible ways to make more than one transition
when considering the m+1st iterate. At time m, either the process has already made more
than two transitions, or the process has made one transition from Bi toMk\Bi before time
m and made an excursion from Mk\Bi to Bi at time m. Note that in the second case,
there are exactly m different ways to perform such transitions (depending on the time of
the first excursion). It follows that

∆m+1 6 ∆m +mPBi
{
Xτ+
Mk

/∈ Bi
}
PMk\Bi

{
Xτ+
Mk

∈ Bi
}
, (6.37)

so that the general term indeed satisfies the bound (6.36).
We can now bound, for all m, the norm of the difference between the iterates of K0

and K?, that is

‖
(
K0
)
m − (K?)m‖ 6 max

16i6k
sup
x∈Bi

∫
Mk

∣∣(k0)
m

(x, y)− (k?)m(x, y)
∣∣ dy . (6.38)

The triangle inequality yields∣∣(k0)
m

(x, y)− (k?)m(x, y)
∣∣ 6 ∣∣(k0)

m
(x, y)− ǩm(x, y)

∣∣
+

∣∣∣∣ǩm(x, y)−
∫
Bi

π̊Bi0 (z)ǩm(z, y) dz

∣∣∣∣
+

∣∣∣∣∫
Bi

π̊Bi0 (z)
(
ǩm(z, y)− (k0)

m
(z, y)

)
dz

∣∣∣∣ . (6.39)

Integrating over Mk, the first and the last term in the right-hand side can be bounded
using (6.36). Using the spectral decomposition (5.4) of k0

Bi
, we obtain∫

Bi

∣∣∣∣ǩm(x, y)−
∫
Bi

π̊Bi0 (z)ǩm(z, y) dz

∣∣∣∣ dy
6
(̊
λBi0

)m ∣∣∣φ̊Bi0 (x)− 1
∣∣∣+ 2

∣∣∣̊λBi1

∣∣∣m sup
z∈Bi

∣∣∣∣∫
Bi

gm(z, y)

∣∣∣∣dy , (6.40)

(since ǩm(x, y) = (k0
Bi

)m(x, y) if x, y ∈ Bi) and∫
Mk\Bi

∣∣∣∣ǩm(x, y)−
∫
Bi

π̊Bi0 (z)ǩm(z, y) dz

∣∣∣∣dy
6

m−1∑
l=0

(̊
λBi0

)l ∣∣∣φ̊Bi0 (x)− 1
∣∣∣ (1− λ̊Bi0

)
+ 2PBi

{
Xτ+
Mk

/∈ Bi
}∣∣∣̊λBi1

∣∣∣l sup
z∈Bi

∣∣∣∣∫
Bi

gl(z, y) dy

∣∣∣∣ .
(6.41)

Regrouping the different terms, we obtain the result.
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7 Perturbation theory for bounded linear operators

In the previous section, we have shown that the kernel Ku (or its m-fold iterates) defined
onMk by

Ku(x, dy) = Ex
{

e
u(τ+
Mk
−1)

1{
X
τ+
Mk

∈ dy
}} , (7.1)

can be approximated by a finite-rank operator K? (or its iterates). We now study the
spectral properties of K? (and its iterates) to deduce the spectral properties of Ku.

In the following, to ease notation, we will consider the case m = 1, but the results
remain true for all m considering the mth return time toMk.

7.1 General idea

Let σ(K?) denote the spectrum of the operator K?. For σ an isolated part of σ(K?), we
define the Riesz projection Πσ(K?) by

Πσ(K?) =
1

2π i

∫
C
(z id−K?)−1 dz , (7.2)

where we assume that C ⊂ C is a Cauchy contour (in the resolvent set of K?) around σ.
Recall that Πσ is a projection [35, Lemma 2.1] and that

Πσ(K?)(K
?) = id . (7.3)

We want to know what happens to the spectrumKu whenKu can be seen as a perturbation
of K?. We choose a Cauchy contour C in C surrounding σ(K?) and first give a condition
that ensures that C does not contain any eigenvalue of Ku. This amounts to checking that
(z id−Ku) is invertible for all z ∈ C.

Proposition 7.1 ([34, Corollary 8.2]). If (z id−K?) is invertible and ‖Ku − K?‖ =
‖(z id−K?)− (z id−Ku)‖ < ‖(z id−K?)−1‖−1, then (z id−Ku) is invertible and

‖(z id−K?)−1 − (z id−Ku)−1‖ 6 ‖(z id−K?)−1‖2‖Ku −K?‖
1− ‖(z id−K?)−1‖‖Ku −K?‖

. (7.4)

To ensure that (z id−Ku) is invertible for all z ∈ C, it is rather natural to require

‖Ku −K?‖ 6 1

2
γ :=

1

2
min

{
‖(z id−K?)−1‖−1|z ∈ C

}
. (7.5)

Under this assumption, (7.4) shows that (z id−Ku) is invertible for all z ∈ C and that

‖(z id−K?)−1 − (z id−Ku)−1‖ 6 2‖(z id−K?)−1‖2‖Ku −K?‖ . (7.6)

Thus the Riesz projection on the part of σ(Ku) inside C, given by

Π =
1

2π i

∫
C
(z id−Ku)−1 dz , (7.7)
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is well-defined. Using (7.3) and (7.6), we obtain

‖id−Π‖ =

∥∥∥∥ 1

2π i

∫
C
(z id−K?)−1 − (z id−Ku)−1 dz

∥∥∥∥
6

1

2π

∫
C
‖(z id−K?)−1 − (z id−Ku)−1‖ dz

6
1

π

∫
C
‖(z id−K?)−1‖2 dz ‖Ku −K?‖ . (7.8)

If ‖id−Π‖ < 1, since Π is a projection, it follows that id−Π = 0, and therefore σ(Ku) is
inside C. Thus a second natural assumption to make in order to control the spectrum of
Ku is that

C :=
1

π

∫
C
‖(z id−K?)−1‖2 dz <

1

‖K? −Ku‖
. (7.9)

This yields the following proposition.

Proposition 7.2 ([35, Proposition 4.2]). Let Ω be an open neighbourhood of σ(K?). Then
there exists ε > 0 such that σ(Ku) ⊂ Ω for any operator Ku with ‖K? −Ku‖ < ε.

More precisely, the above discussion shows that if

‖Ku −K?‖ < min

{
1

2
γ, (C + 1)−1

}
, (7.10)

where γ and C are the quantities introduced in (7.5) and (7.9) and C is a Cauchy contour
that separates a simple eigenvalue of K? from the remaining part of its spectrum, then
C also contains a simple eigenvalue for Ku. Before estimating the quantities γ and C, we
need to study the spectrum of K?.

7.2 Estimation of the eigenvalues of K?

We are interested in the eigenvalues of the finite-rank kernel K? given by

K?(x,dy) =

k∑
i=1

1{x∈Bi}

∫
Bi

π̊Bi0 (x0) K0(x0, dy) dx0 . (7.11)

A kernel has finite rank whenever it can be written as a sum of a finite number of products
of functions of its first argument alone by functions of its second argument alone. Because
K? has finite rank, we can associate to it a k × k matrix whose non-zero eigenvalues
correspond to the non-zero eigenvalues of K?. Indeed, non-zero eigenvalues of K? are
solutions of the homogeneous Fredholm equation of the second kind

λφ(x) =

∫
Mk

K?(x, dy)φ(y) . (7.12)

Let us introduce the unknown constants

ci =

∫
Mk

Pπ̊
Bi
0

{
Xτ+
Mk

∈ dx
}
φ(x) (7.13)

which depend on the eigenfunction φ(x). It follows that

λφ(x) =
k∑
i=1

ci1{x∈Bi} . (7.14)
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For λ 6= 0, inserting this expression in (7.12) we obtain

k∑
i=1

1{x∈Bi}

[
ci −

1

λ

∫
Mk

Pπ̊
Bi
0

{
Xτ+
Mk

∈ dy
} k∑
j=1

cj1{y∈Bj}

]
= 0 . (7.15)

Writing
Pij = Pπ̊

Bi
0

{
Xτ+
Mk

∈ Bj
}

(7.16)

and since
(
1{x∈Bi}

)
16i6k is a set of linearly independent functions, we obtain the system

of linear algebraic equations

λci =

k∑
j=1

Pijcj , 1 6 i 6 k . (7.17)

It follows that non-zero eigenvalues of K? correspond to the non-zero eigenvalues of the
matrix P . For 0 6 i 6 k − 1, we denote these eigenvalues λi.

Note that the matrix P is a stochastic matrix and due to the Laplace transform con-
dition (4.6), these eigenvalues should satisfy

sup
x∈Mc

k

Px{X1 ∈Mc
k} < |λi| 6 1 (7.18)

for all 0 6 i 6 k − 1.
Let us examine the structure of the matrix P . Thanks to the large-deviations estimates

of Proposition 3.1, elements on the main diagonal of P are close to one, whereas off-diagonal
elements are close to zero. In order to study a matrix where all elements are small we
introduce P̂ = id−P . Its diagonal elements are given by

P̂ii = Pπ̊
Bi
0

{
Xτ+
Mk

/∈ Bi
}

= Pπ̊
Bi
0

{
Xτ+
Mk

∈Mk\Bi
}
. (7.19)

Our aim is now to derive spectral properties of the matrix P̂ . Such a problem has been
studied by Wentzell [49] usingW -graphs. Here we use a different approach based on block-
triangularisation [6, Section 6.1], which also gives direct access to eigenfunctions. We write
P̂ in the form

P̂ =

(
P̂11 P̂12

P̂21 â

)
(7.20)

where P̂11 ∈ R(k−1)×(k−1), P̂12 ∈ Rk−1, P̂>21 ∈ Rk−1 and â ∈ R. We want to prove that
there exist matrices S, T in Rk×k of the form

S =

(
id S12

0 1

)
, T =

(
T11 0
T21 α

)
(7.21)

with the submatrices having the same dimensions as those of P̂ and verifying

P̂S = ST . (7.22)

Following the argument of [6, Section 6.1], if we manage to prove that

P̂11S12 − S12â− S12P̂21S12 + P̂12 = 0 (7.23)
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admits a unique solution, it will follow that P̂ is similar to the block-diagonal matrix T ,
and the eigenvalues of P̂ are α and those of T11. Note that T11, T21 and α are then given
by

T11 = P̂12 − S12P̂12 , T21 = P̂21 , α = â+ P̂21S12 . (7.24)

The fact that (7.23) admits a unique solution will be proven using the Banach fixed point
theorem. In the sequel, the matrix norm used is the sup-norm.

Proposition 7.3. Introduce the notations

b = max
16l6k−1

Pπ̊
Bl
0

{
Xτ+
Mk

/∈ Bl
}
, (7.25)

â = Pπ̊
Bk
0

{
Xτ+
Mk

/∈ Bk
}
6= 0 . (7.26)

For fixed blocks P̂11, P̂12, P̂21 and â, if

b

â
<

1

8
(7.27)

then (7.23) admits a unique solution. Moreover, this solution satisfies

‖S?12‖ 6 2
‖P̂12‖
â

. (7.28)

Proof: Let B be the ball B = {Ξ ∈ Rk−1, ‖Ξ‖ 6 2‖P̂12‖
â } ⊂ Rk−1. We equip the Banach

space Rk−1 with the supremum norm, and define a map Φ : B → B by

Φ(Ξ) =
1

â

(
P̂12 + P̂11Ξ− ΞP̂21Ξ

)
. (7.29)

Note that
‖P̂11‖ 6 2b, ‖P̂12‖ 6 b, ‖P̂21‖ = â . (7.30)

It is then straightforward to check that Φ is a contraction on B.

Remark 7.4. It follows from (7.23) that S?12 satisfies

S?12 =

(
id− P̂11

â
+
P̂21S

?
12

â
id

)−1
P̂12

â

=
∑
k>0

(
P̂11

â
− P̂21S

?
12

â
id

)k
P̂12

â
. (7.31)

This yields a more precise estimate than the a priori estimate (7.28). In particular, at the
first order, it follows ∥∥∥∥S?12 −

P̂12

â

∥∥∥∥ 6 4b/â

1− 4b/â

‖P̂12‖
â

(7.32)

♦
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Re(1− λ)

Im(1− λ)

1

1

Pπ̊
Bk
0

{
X
τ+Mk

∈ Mk−1

}

Figure 5: Sketch of the location of eigenvalues of P̂ = id−P .

Corollary 7.5. For 0 6 i 6 k − 1, we denote λ?i the eigenvalues of K? labelled by decreas-
ing order. Then the smallest in modulus non-zero eigenvalue λ?k−1 of K? is real, simple
and satisfies ∣∣∣∣λ?k−1 −

(
1− Pπ̊

Bk
0

{
Xτ+
Mk

/∈ Bk
})∣∣∣∣ 6 2‖P̂12‖ 6 2b , (7.33)

Furthermore, for 0 6 i 6 k − 2, the other non-zero eigenvalues of K? satisfy

|1− λ?i | 6 ‖T11‖ 6 4‖P̂12‖ 6 4b . (7.34)

Proof: To each non-zero eigenvalue of P corresponds a non-zero eigenvalue of K?. From
Proposition 7.3, the biggest non-zero eigenvalue of id−P , thus the smallest non-zero of
K?, is real and positive and satisfies∣∣∣(1− λ?k−1)− Pπ̊

Bk
0

{
Xτ+

Bk

/∈ Bk
}∣∣∣ 6 2‖P̂12‖ 6 2b . (7.35)

Remark 7.6. Note that 1− Pπ̊
Bk
0
{
Xτ+

Bk

/∈ Bk
}
is the principal eigenvalue of kernel K?

Bk
,

(the process with kernel K? killed upon leaving Bk). ♦

Thanks to the block-triangularisation, we also get an explicit expression for the eigen-
function associated to the smallest eigenvalue of K?.

Lemma 7.7. Up to a multiplicative constant, the eigenfunction of K? corresponding to
the eigenvalue λ?k−1 is given by

φ?k−1(x) =

k−1∑
i=1

1{x∈Bi}(S
?
12)i + 1{x∈Bk} (7.36)

where S?12 is a unique solution of (7.23).

The proof is immediate since

P̂

(
S?12

1

)
= (1− λ?k−1)

(
S?12

1

)
. (7.37)
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7.3 Resolvent estimate of K?

We now want to estimate the quantities C and γ associated to the real and simple eigenvalue
λ?k−1 of K?, cf. (7.9) and (7.5). Thus we need an upper bound on the norm of the resolvent
‖(z id−K?)−1‖ when z is close to λ?k−1. Note that for z 6= 0, the resolvent operator satisfies
the resolvent equation

(z id−K?)−1 =
1

z

(
id +K?(z id−K?)−1

)
. (7.38)

Solving the Fredholm linear integral equation of the second kind,

zφ(x) = ϕ(x) + (K?φ)(x)

= ϕ(x) +

∫
Mk

k∑
i=1

1{x∈Bi}P
π̊
Bi
0

{
Xτ+
Mk

∈ dy
}
φ(y)

= ϕ(x) +

k∑
i=1

1{x∈Bi}ci (7.39)

and following the same procedure as for the homogeneous equation (7.12), we obtain the
system of linear algebraic equations given for all 1 6 i 6 k by

zci −
k∑
i=1

Pijcj = ϕi :=

∫
Mk

Pπ̊
Bi
0

{
Xτ+
Mk

∈ dy
}
ϕ(y) . (7.40)

If z is such that det(z id−K?) 6= 0, i.e. not an eigenvalue of K?, the system has the unique
solution given by

ci =
k∑
j=1

(z id−P )−1
ij ϕj , 1 6 i 6 k . (7.41)

Inserting the previous result in (7.39), we see that

zφ(x) = ϕ(x) +

∫
Mk

k∑
i=1

k∑
j=1

1{x∈Bi}(z id−P )−1
ij Pπ̊

Bj
0

{
Xτ+
Mk

∈ dy
}
ϕ(y) , (7.42)

from which it follows that the resolvent operator (z id−K?)−1 admits a resolvent kernel
R(z;x, dy) given by

R(z;x,dy) =
1

z

[
id +

k∑
i=1

k∑
j=1

1{x∈Bi}(z id−P )−1
ij Pπ̊

Bj
0

{
Xτ+
Mk

∈ dy
}]

. (7.43)

Since R = 1
z{id +(RK?)} and thanks to (7.38), it follows that the resolvent kernel of the

resolvent operator (z id−K?)−1 is also given by

R(z;x,dy) =
k∑
i=1

k∑
j=1

1{x∈Bi}(z id−P )−1
ij Pπ̊

Bj
0

{
Xτ+
Mk

∈ dy
}
. (7.44)

We are now able to bound the resolvent of K?. Let C be the contour defined by{
z ∈ C : |z − λk| = r

}
, (7.45)
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and let us assume that
r <

â

4
<
â− 6b

2
. (7.46)

Then have the following resolvent estimate.

Proposition 7.8. Recall that we denote λ?k−1 the smallest non-zero eigenvalue of the kernel
K?. There exists a numerical constant c1 > 0, independent of σ, such that for all z ∈ C

‖(z id−K?)−1‖ < c1

(
z − λ?k−1

)−1 . (7.47)

Proof: Note that we have equality between the supremum norms of the resolvent of the
operator K? and of the matrix P , i.e.

‖(z id−K?)−1‖ = ‖(z id−P )−1‖ . (7.48)

Let us now derive an upper bound on ‖(z id−P )−1‖ for z ∈ C. Thanks to the block-
triangularisation (7.22), we get

‖(z id−P )−1‖ =
∥∥∥((1− z) id−P̂

)
−1
∥∥∥

6 ‖S‖‖S−1‖‖((1− z) id−T )−1‖ . (7.49)

Since ‖S‖ = ‖S−1‖ = 1 + ‖S12‖, we can bound ‖S‖‖S−1‖ thanks to (7.28). We also have
an explicit expression for ((1− z) id−T )−1, given by[

(1− z) id−T
]−1

=

(
id 0

T21(1− λ?k−1)−1 1

)([
(1− z) id−T11

]−1
0

0
[
(1− z)− (1− λ?k−1)

]−1

)
. (7.50)

Since |1− z| > ‖T11‖ for all z ∈ C, we have the classical bound

‖((1− z)− T11)−1‖ 6 1

|1− z| − ‖T11‖
. (7.51)

For all r < â−6b
2 , we finally get

‖(z id−P )−1‖ 6 1∣∣z − λ?k−1

∣∣
(

1 + 2
b

â

)2(
1 +

â

â− 6b− r

)
. (7.52)

The result is then immediate since

‖(z id−P )−1‖ 6 9

(
1 +

1

4

)2∣∣z − λ?k−1

∣∣−1
. (7.53)

We can now estimate C. Since the resolvent kernel is bounded, the M-L inequality
yields the upper bound

C =
1

π

∫
C
‖(z id−K?)−1‖2 dz 6 2r‖(z id−K?)−1‖2 . (7.54)

39



It follows that
ε = min

{
1

2
γ, (C + 1)−1

}
>

r

396
. (7.55)

Thus, if
‖Ku −K?‖ < r

396
, (7.56)

we have the desired result for the approximation of the eigenvalues of Ku, where Ku is
seen as an approximation of K?. In Section 9, we will check that this inequality and (7.46)
are indeed satisfied.

8 Sample path estimates

8.1 Stochastic differential equations with coexistence of periodic orbits

In this section, if x ∈ Rd then ‖x‖ denotes the Euclidean norm of x. We assume that
the deterministic system (2.1) admits N stable periodic orbits and N+ unstable periodic
orbits, i.e., there are periodic functions γ−i : R→ D of respective periods Ti such that

γ̇i(t) = f(γi(t)) ∀t ∈ R (8.1)

for 1 6 i 6 N , and there are periodic functions γ+
i : R→ D of respective periods T+

i such
that

γ̇+
i (t) = f

(
γ+
i (t)

)
∀t ∈ R . (8.2)

In what follows, we study the behaviour of the system in the neighbourhood of a stable or
unstable periodic orbit. Adapting [9, Proposition 2.1] and [9, Proposition 3.3] to the mul-
tidimensional case, it follows that the SDE (2.5) can be written in polar-type coordinates
as shown in the following proposition.

Proposition 8.1. There exists a change of coordinates such that in a neighbourhood of
a stable periodic orbit (i.e., for (x, ϕ) such that ‖x‖ is small enough), the SDE takes the
form

dxt = (−Λxt + bx(xt, ϕt))dt+ σgx(xt, ϕt)dWt ,

dϕt =

(
1

Ti
+ bϕ(xt, ϕt)

)
dt+ σgϕ(xt, ϕt)dWt , (8.3)

where Λ is a triangular matrix with positive diagonal elements corresponding to the Lya-
punov exponents of the stable orbit, bx, bϕ, gx, gϕ are periodic in ϕ with period 1, and the
nonlinear drift terms satisfy ‖bx(x, ϕ)‖, |bϕ(x, ϕ)| = O(‖x‖2).

Note that we can choose Λ to be in Jordan canonical form, and that in these variables
the Bi can be taken to be balls {x : ‖x‖ 6 δ}. In the neighbourhood of an unstable periodic
orbit, we have the following similar result.

Proposition 8.2. There exists a change of coordinates such that in a neighbourhood of an
unstable periodic orbit (i.e., for (x, ϕ) such that‖x‖ is small enough), the SDE takes the
form

dxt =

((
−Λ− 0

0 Λ+

)
xt + bx(xt, ϕt)

)
dt+ σgx(xt, ϕt)dWt ,

dϕt =

(
1

Ti
+ bϕ(xt, ϕt)

)
dt+ σgϕ(xt, ϕt)dWt , (8.4)
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where Λ− is a triangular matrix with positive diagonal elements, Λ+ is a triangular matrix
with non-negative diagonal elements and at least one strictly positive diagonal element,
corresponding to the Lyapunov exponents, bx, bϕ, gx, gϕ are periodic in ϕ with period 1,
and the nonlinear drift terms satisfy ‖bx(x, ϕ)‖, |bϕ(x, ϕ)| = O(‖x‖2).

Proof of Propositions 8.1 and 8.2. Using the time parametrisation proposed in [9],
i.e., setting Γi(ϕ) = γi(Tiϕ) so that ϕ ∈ R/Z (ϕ parametrises time), and Itô’s formula,
the stochastic differential equation (2.5) is equivalent, thanks to the transformation of
Proposition B.1, to a system of the form

dxt = fx(xt, ϕt, σ)dt+ σgx(xt, ϕt)dWt

dϕt = fϕ(xt, ϕt, σ)dt+ σgϕ(xt, ϕt)dWt . (8.5)

As noted in [9], a drawback of this system is that the drift term fx does not vanish in
x = 0. We use a similar argument as in [9, Proposition 3.3] to obtain the desired form.

8.2 General estimates

We consider the system in continuous time describing the dynamics near a periodic orbit
in the polar-type coordinates (8.3) or (8.4). We first recall a result proved in [9] which
shows that ϕt does not differ much from t/Ti on rather long timescales. Given T,H > 0,
we introduce two stopping times by

τ̃H = inf{t > 0 : ‖xt‖ > H} ,

τ̃ϕ = inf

{
t > 0 :

∣∣∣∣ϕt − t

Ti

∣∣∣∣ >M(H2t+
√
H3T

)}
. (8.6)

Then [9, Proposition 6.3] gives us the following result.

Proposition 8.3 (Control of the diffusion along ϕ). There is a constant C1, depending
only on the ellipticity constants of the diffusion terms, such that

P(x,0){τ̃ϕ < τ̃H ∧ T} 6 e−H/(C1σ2) (8.7)

holds for all T, σ,H > 0 and all x with ‖x‖ < H.

The following result bounds the probability to escape from one of the metastable neigh-
bourhood Bi.

Proposition 8.4. There exist C > 0 and κ > 0 such that for all x ∈ Bi ⊂Mk,

Px{X1 /∈Mk} 6 C e−κ|Bi|/σ
2
, (8.8)

where |Bi| denotes the radius of the ball Bi.

Proof: We introduce the continuous stopping time τ̃Σ = inf{t > 0: ϕt > 1} correspond-
ing to the first return time to the Poincaré map. Then for any initial condition (x0, 0) with
x0 ∈ Bi,

Px0{X1 /∈Mk} = P
{
‖x(x0,0)

τ̃Σ
‖ > |Bi|

}
. (8.9)

Introducing a second sample path starting on the ith stable periodic at time 0, i.e. started
in (0, 0), and driven by the same Brownian motion, we can use an upper bound on the
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probability that the two sample paths do not approach each other exponentially fast to
bound (8.9). Indeed, for % ∈ (0, 1),

P
{
‖x(x0,0)

τ̃Σ
‖ > |Bi|

}
6 P

{
‖x(0,0)

τ̃Σ
‖ > (1− %) |Bi|

}
+ P

{
‖x(x0,0)

τ̃Σ
− x(0,0)

τ̃Σ
‖ > % |Bi|

}
. (8.10)

Adapting [9, Proposition 6.12], we obtain the existence of c0 > 0 and % < 1 such that
the second term on the right-hand side, corresponding to the difference of the two sample
paths, is bounded by

P
{
‖x(x0,0)

τ̃Σ
− x(0,0)

τ̃Σ
‖ > % |Bi|

}
6 e−c0|Bi|/σ

2
. (8.11)

In order to apply Proposition 8.3 to bound the first term on the right-hand side of (8.10),
we decompose

P
{
‖x(0,0)

τ̃Σ
‖ > (1− %) |Bi|

}
6 P

{
‖x(0,0)

τ̃Σ
‖ > (1− %) |Bi| , τ̃ϕ > τ̃H ∧ T

}
+ P(0,0){τ̃ϕ < τ̃H ∧ T} , (8.12)

where we will choose T = 2Ti and H = (1− %) |Bi|. Note that the solution of (8.3) with
initial condition (0, 0) can be written as

x
(0,0)
t =

∫ t

0
e−Λ(t−s) bx

(
x(0,0)
s , ϕ(0,0)

s

)
ds+ σ

∫ t

0
e−Λ(t−s) gx

(
x(0,0)
s , ϕ(0,0)

s

)
dWs . (8.13)

To bound the first term on the right-hand side of (8.12), observe that on {τ̃ϕ > τ̃H ∧ T}
we have τ̃Σ < 2Ti and thus

P
{
‖x(0,0)

τ̃Σ
‖ > (1− %) |Bi| , τ̃ϕ > τ̃H ∧ T

}
6 P

{
sup

06s62Ti

‖x(0,0)
s ‖ > (1− %) |Bi|

}
. (8.14)

Using a Bernstein inequality and a partition of the interval [0, 2Ti], as in [8, Theorem 5.1.18]
or [11, Proposition 3.3], we can show that there exist C0, κ0 > 0 such that

P
{

sup
06s62Ti

‖x(0,0)
s ‖ > (1− %) |Bi|

}
6 C0 e−κ0|Bi|/σ2

. (8.15)

Using Proposition 8.3 to bound the second term on the right-hand side of (8.12), we obtain
the result.

We also need to bound the probability of staying close to an unstable periodic orbit.
Let U ⊂ Σ be a union of neighbourhoods of size δ of the unstable periodic orbits, with δ
of order 1, and let S ⊂ U be a union of neighbourhoods of size h = σ3/4 of the unstable
periodic orbits on the Poincaré section.

Proposition 8.5. Let h = σ3/4 and τ̃Sc = inf{t > 0 : ‖xt‖ = h}. There exists a constant
C2 such that for any x such that ‖x‖ < h and 0 < T 6 1/h,

P(x,0){τ̃Sc > T, τ̃ϕ > τ̃Sc ∧ T} 6 C2σ
1/2 . (8.16)
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Proof: We introduce the stopping time

τ̃h+ = inf
{
t > 0 : ‖x+

t ‖ = h
}

(8.17)

where x+ corresponds to the coordinates with positive Lyapunov exponents. Note that

P(x,0){τ̃Sc > T, τ̃ϕ > τ̃Sc ∧ T} 6 P(x,0){τ̃h+ > T, τ̃ϕ > τ̃Sc ∧ T} . (8.18)

On {τ̃ϕ > τ̃Sc ∧ T}, ϕt is close to t/Ti, hence the equation for x+
t can be written

dx+
t =

(
Λ+x+

t + bx+(xt, ϕt)
)

dt+ σ(g0(t) + g1(xt, ϕt, t)) dWt (8.19)

where g0(t) = gx+(0, t/Ti) and g1 = O(‖x‖+ h). The solution can be expressed as

x+
t = eΛ+t

{
σ

∫ t

0
e−Λ+s g0(s) dWs + σ

∫ t

0
e−Λ+s g1(xs, ϕs, s) dWs

+

∫ t

0
e−Λ+s bx+(xs, ϕs) ds

}
. (8.20)

The proof is then similar to [8, Theorem 3.2.2].

The following proposition will allow us to extend the previous estimate to an exit from
the larger set U . We denote U\S by K.

Proposition 8.6. Let τ̃Kc = inf{t > 0: xt /∈ K}. There exists a constant κ2 > 0 such that
for any initial condition (x, 0) ∈ K,

P(x,0){τ̃Kc > t} 6 e−κ2t/ log(σ−1) . (8.21)

Furthermore, if τ̃Uc = inf{t > 0: xt /∈ U} and τ̃S = inf{t > 0: xt ∈ S}, for any T0 > 0
there exists a constant κ3 > 0 such that

P(x,0){T0 6 τ̃S < τ̃Uc} 6 e−κ3/σ1/2
. (8.22)

Proof: First, note that {τ̃Kc > t} ⊂
{
‖x+

T ‖ < δ
}
. Assume that the unstable periodic

orbit admits m+ positive Lyapunov exponents. We introduce the Lyapunov function

Ut =

m+∑
i=1

(x+
t,i)

2 . (8.23)

Applying Itô’s formula we obtain

dUt =
{m+∑
i=1

λ+
i (x+

t,i)
2 + β(xt, ϕt)

}
dt+ σ

m+∑
i=1

gx,i(xt, ϕt) dW i
t (8.24)

where β(xt, ϕt) 6M
(
(Ut)

3/2 + σ2
)
. The proof is then similar to the proof of [10, Proposi-

tion D.4]. Indeed, the drift term is bounded below by a constant times Ut, and
{
‖x+

T ‖ < δ
}
⊂{

UT < m+δ2/2
}
. Using an endpoint estimate and the Markov property to restart the pro-

cess at times which are multiples of log(σ−1), we obtain (8.21). The estimate (8.22) is
obtained by bounding the probability that Ut leaves a neighbourhood of size σ3/4 around
an exponentially growing term, similarly to [10, Proposition D.7].
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Proposition 8.7. For all x ∈ (U ∪MN )c, there exist constants C1, κ1 > 0 such that

Px
{
τ+
U < τ+

MN

}
6 C1 e−κ1/σ2

. (8.25)

Proof: Consider a deterministic solution zdet
t =

(
xdet
t , ϕdet

t

)
with initial condition z0 =

(x, 0). Since ∂U is at distance of order 1 of any unstable periodic orbit, and because the
stable periodic orbits are the only attractive limit sets (Assumption 2.2), zdet

t will reach a
neighbourhood of a stable periodic orbit in a time T of order 1. Using [8, Theorem 5.1.18],
it follows that for t > 0,

P(x,0)

{
sup

06s6t
‖zs − zdet

s ‖ > h0

}
6 C0(1 + t) e−κ0h2

0/σ
2

(8.26)

for some constants C0, κ0 > 0. Note that the estimate holds for h0 6 h1/χ(t), where h1 is
another constant and χ(t) is related to the local Lyapunov exponent of zdet

t . Since zdet
t is

attracted by the stable orbit, there exists M0 > 0 such that χ(T ) 6 1 + M0T . Applying
(8.26) with h0 = |Bi| /2, we find that any sample path which does not reach U before time
T will hit Bi with high probability.

8.3 Mean return time estimates

The following two lemmas are useful to bound expectations of first return times.

Lemma 8.8. For any A ⊂ Σ, n0 ∈ N and x ∈ Σ, the expectation of the first return time
to A satisfies

Ex
{
τ+
A

}
6

n0Px
{
τ+
A > n0

}
1− PAc

{
τ+
A > n0

} . (8.27)

Proof: Using the Markov property, we decompose the expectation as

Ex
{
τ+
A

}
=
∑
i>0

n0∑
n=1

Px
{
τ+
A > in0 + n

}
6 n0

∑
i>0

Px
{
τ+
A > (i+ 1)n0

}
6 n0

∑
i>0

Px
{
τ+
A > n0

}(
PA

c{
τ+
A > n0

})i (8.28)

which gives the result by summing a geometric series.

The next lemma is inspired by results in [13].

Lemma 8.9. For any A,B,C ⊂ Σ,

EA
{
τ+
B

}
6 EA

{
τ+
B∪C

}
+ PA

{
τ+
C < τ+

B

}
EC
{
τ+
B

}
. (8.29)

Proof: Splitting the expectation according to the event
{
τ+
B < τ+

C

}
or
{
τ+
C < τ+

B

}
and

then using the strong Markov property, we obtain

Ex
{
τ+
B

}
= Ex

{
τ+
B1{τ+

B<τ
+
C }
}

+ Ex
{
τ+
B1{τ+

C<τ
+
B}
}

= Ex
{
τ+
B1{τ+

B<τ
+
C }
}

+ Ex
{[

(τ+
B − τ

+
C ) + τ+

C

]
1{τ+

C<τ
+
B}
}

= Ex
{
τ+
B∪C

}
+ Ex

{
(τ+
B − τ

+
C )1{τ+

C<τ
+
B}
}

6 Ex
{
τ+
B∪C

}
+ PA

{
τ+
C < τ+

B

}
EC
{
τ+
B

}
, (8.30)
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which gives the result by taking the supremum for x ∈ A.

Corollary 8.10. For U as defined in Section 8.2,

EM
c
N
{
τ+
MN

}
6

EU
{
τ+
Uc
}

+ E(U∪MN )c
{
τ+
U∪MN

}
1− P(U∪MN )c

{
τ+
U < τ+

MN

} . (8.31)

Proof: For all x ∈Mc
N ,

Ex
{
τ+
MN

}
6 max

{
EU
{
τ+
MN

}
,E(U∪MN )c

{
τ+
MN

}}
. (8.32)

Applying Lemma 8.9 with A = U , B =MN and C = (U ∪MN )c, we obtain

EU
{
τ+
MN

}
6 EU

{
τ+
Uc
}

+ E(U∪MN )c
{
τ+
MN

}
, (8.33)

whereas taking A = (U ∪MN )c, B =MN and C = U , we get

E(U∪MN )c
{
τ+
MN

}
6 E(U∪MN )c

{
τ+
MN∪ U

}
+ P(U∪MN )c

{
τ+
U < τ+

MN

}
EU
{
τ+
MN

}
. (8.34)

Combining these two bounds, we obtain

EU
{
τ+
MN

}
6 EU

{
τ+
Uc
}

+ E(U∪MN )c
{
τ+
MN∪ U

}
+ P(U∪MN )c

{
τ+
U < τ+

MN

}
EU
{
τ+
MN

}
,

(8.35)
which yields (8.31).

In order to bound the expected value EU
{
τ+
Uc
}
, we will again use Lemma 8.9 with two

neighbourhoods of an unstable periodic orbit. First, we show that the sample paths are
likely to leave the small neighbourhood S of the unstable periodic orbit (of size h = σ3/4),
then as soon as paths have left S, the drift term will make it easier to escape from the
larger neighbourhood U . Using similar arguments as in the proof of Corollary 8.10, we
obtain the following result.

Lemma 8.11. For S ⊂ U and K = U \ S, as defined in Section 8.2, and all x ∈ U ,

Ex
{
τ+
Uc
}
6

EK
{
τ+
Kc
}

+ ES
{
τ+
Sc
}

1− PK
{
τ+
S < τ+

Uc
} . (8.36)

The different expected values involved in (8.36) will be bounded using Lemma 8.8 and
results from Section 8.2.

Proposition 8.12. There exist constants M1, κ > 0 such that

ES
{
τ+
Sc
}
6M1σ

1/2 ,

EK
{
τ+
Kc
}
6M1 log(σ−1) ,

PK
{
τ+
S < τ+

Uc
}
6 e−κ/σ

1/2
. (8.37)

Proof: Recall that τ̃Sc = {inf t > 0 : ‖xt‖ > h}, and let n0 > T/Ti + σ3/4, with 0 < T 6
1/σ3/4. For all x ∈ S,

Px
{
τ+
Sc > n0

}
6 P(x,0){τ̃ϕ < τ̃Sc ∧ T}+ P(x,0)

{
τ̃ϕ > τ̃Sc ∧ T, τ+

Sc > n0

}
6 P(x,0){τ̃ϕ < τ̃Sc ∧ T}+ P(x,0)

{
τ̃ϕ > τ̃Sc ∧ T, τ+

Sc > n0, τ̃Sc < T
}

+ P(x,0){τ̃ϕ > τ̃Sc ∧ T, τ̃Sc > T} . (8.38)
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However since n0 > T/Ti + σ3/4,

P(x,0)
{
τ̃ϕ > τ̃Sc ∧ T, τ+

Sc > n0, τ̃Sc < T
}

= 0 . (8.39)

We obtain the bound on ES
{
τ+
Sc
}
using (8.16) and applying Lemma 8.8. The two other

bounds follow in a similar way, using Proposition 8.6.

Combining the last three results with Proposition 8.7, we immediately get:

Corollary 8.13. There exists a constant M2 > 0 such that

EM
c
N
{
τ+
MN

}
6M2 log(σ−1) . (8.40)

We are now going to estimate the mean return time Ex
{
τ+
Mk

}
for x ∈ Mk. This esti-

mate is needed to bound the norm of the difference between Ku and K? in Proposition 4.5.
By decreasing induction on k (1 6 k 6 N), we can prove that for all x ∈ Mk, the expec-
tation Ex

{
τ+
Mk

}
is exponentially close to one. We start by estimating the expectation of

the first return time toMN .

Lemma 8.14. For all x ∈MN ,

Ex
{
τ+
MN
− 1
}
6 Px{X1 /∈MN}EM

c
N
{
τ+
MN

}
. (8.41)

Proof: Splitting the expectation according to the location of X1, we have

Ex
{
τ+
MN

}
6 1 + Px{X1 /∈MN}EM

c
N
{
τ+
MN

}
. (8.42)

Lemma 8.15. For all k < N , for all x ∈ Bi ⊂Mk,

Ex
{
τ+
Mk

}
6 Ex

{
τ+
Mk+1

}
+ Px

{
τ+
Bk+1

< τ+
Mk

}
EBk+1

{
τ+
Mk

}
. (8.43)

Proof: The proof is a direct application of Lemma 8.9 with A = Bi, B = Mk and
C = Bk+1.

Combining the last two lemmas with Corollary 8.13 and Proposition 8.4 shows that,
as announced, EMk

{
τ+
Mk

}
= 1 + O(e−κ/σ

2
) for all k, where κ > 0 is proportional to the

size of the neighbourhood Bi.

8.4 Coupling argument

In order to apply the coupling argument in Proposition 5.4, we need to estimate the
probability that two trajectories (Xx1

n )n and (Xx2
n )n driven by the same realization of the

Brownian motion drift apart, i.e., their difference leaves a contracting “layer”.

Proposition 8.16 ([9, Proposition 6.12]). There exist C, κ > 0 and % < 1, independent of
σ such that for x1, x2 ∈ Bi,

P{‖Xx1
n −Xx2

n ‖ > %n‖x1 − x2‖} 6 C e−κ/σ
2
. (8.44)

The proof is a straightforward generalisation of the proof of [9, Proposition 6.12] to the
multidimensional case. As explained in [9, Section 6.3], it follows that the stopping time
N introduced in (5.16) satisfies P{N > n0} 6 n0 e−κ/σ

2 for an n0 of order log(σ−1). Using
the Markov property at multiple times of n0, if follows that

ρkn0 = P{N > kn0} 6
(
M log(σ−1) e−κ/σ

2)k
. (8.45)

Choosing k such that kκ > C + 1 in (5.18), we obtain a constant L(n) close to 1.
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8.5 Miscellaneous a priori bounds

Proof of Proposition 2.8. If the initial condition z lies within the basin of attraction
of one of the stable periodic orbits, the same argument as in Proposition 8.7 shows that Zt
will reach Σ in a time of order 1 with high probability, so that Pz

{
τΣ > 2T

}
is exponentially

small. If z belongs to the neighbourhood of an unstable periodic orbit, the results from
Section 8.3 show that Zt will leave this neighbourhood in a mean time of order log(σ−1).
A similar result holds if z belongs to the neighbourhood of an unstable equilibrium point,
as shown in [42, 3, 1]. Combining this with the strong Markov property and (2.15) yields
the result.

Proof of Proposition 3.1. For two points x, y ∈ Σ, the continuous-time large-deviation
principle naturally induces a discrete-time large-deviation principle with rate function

J(x, y) = inf
T>0

inf
γ:(x,0)→(y,1)

I[0,T ](γ) , (8.46)

where the notation γ : (x, 0) → (y, 1) implies that we consider trajectories visiting Σ′

between the points x and y (this can be viewed as an instance of the contraction principle).
More generally, for any sequence (x0, . . . , xn) of points in Σ, the rate function is given by
J(x0, . . . , xn) =

∑n−1
j=0 J(xj , xj+1). The fact that V (x?i , x

?
j ) = H(i, j) implies that for any

η > 0, there exists a T > 0 and a continuous-time trajectory γ connecting the two periodic
orbits in time T such that

I[0,T ](γ) 6 H(i, j) +
η

2
. (8.47)

Enlarging T if needed, one can assume that γ starts and ends on Σ, since one can follow
the deterministic flow at zero cost. Furthermore, there exists δ > 0 such that if the
neighbourhood Bi, Bj have radius δ, they can be connected by a trajectory γ such that
I[0,T ](γ) 6 H(i, j) + η. We may assume that γ intersects Bi ∪ Bj only at its endpoints,
for otherwise there would exist a cheaper way to connect the neighbourhoods. Therefore,
there exists n > 1 and points x0 ∈ Bi, x1, . . . , xn−1 /∈ Bi ∪ Bj , xn ∈ Bj , defined by the
successive intersections of γ with Σ, such that

J(x0, . . . , xn) 6 H(i, j) + η . (8.48)

On the other hand, for any η > 0, there exists a neighbourhood of radius δ > 0 such that
for any x ∈ Bi and y ∈ Bj , V (x, y) > H(i, j)− η. A similar argument as above shows that
any discrete-time trajectory connecting the neighbourhoods must also have a cost larger
than H(i, j)− η.

9 Last steps of the proofs

9.1 Proof of Theorem 3.2

Fix a small constant η > 0. We start by estimating the kth eigenvalue λk−1 of K, by
showing that it is close to the kth eigenvalue λ?k−1 of the finite rank kernel K?, estimated
in Corollary 7.5.

As discussed in Section 8.4, we can find an n of order log(σ−1) such that each kernel
K0
Bi

satisfies the uniform positivity condition (5.7), with L(n) − 1 an arbitrary positive
constant of order 1. Then Proposition 5.1 shows the existence of a constant c0 > 0 such
that ∣∣̊λBi1

∣∣ 6 e−c0/ log(σ−1) . (9.1)
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Proposition 5.5, (5.3) and the large-deviation estimate in Proposition 3.1 yield the bound

‖φ̊Bi0 − 1‖ 6M0 log(σ−1) e−[H(i,Mk\{i})−η]/σ2
(9.2)

on the oscillation of the principal eigenfunction. Plugging this into Proposition 6.7 and
using Assumption 2.5 to compare the various H(i, j) yields

‖(K0)m − (K?)m‖ 6 2 e−mc0/ log(σ−1) +
[
M0 log(σ−1) +m2 e−H

′
k/σ

2]
e−H

′
k/σ

2
(9.3)

where H ′k = H(k,Mk−1) − η. Combining this with Proposition 6.6 and the mean return
time estimates in Section 8.3 shows that ‖(Ku)m − (K?)m‖ is bounded by

∆m = 2 e−mc0/ log(σ−1) +
[
M0 log(σ−1) +m2 e−H

′
k/σ

2]
e−H

′
k/σ

2

+
(
1 + 2(1− e−u) e−θ

′/σ2)m − 1 , (9.4)

provided (1− e−u) e[H(k+1,Mk)+η]/σ2
6 1/2. The argument given in Section 7.1 shows that

(Ku)m admits a unique eigenvalue λmk−1 inside the contour C of radius c2∆m centred in
(λ?k−1)m (for a c2 of order 1), and that

1− λmk−1

1− (λ?k−1)m
= 1 +O

(
∆m

1− (λ?k−1)m

)
. (9.5)

Note that this eigenvalue is necessarily real, since (Ku)m is real and has exactly one
eigenvalue inside C. Using the fact that for any x ∈ (0, 1) such that m(1− x) < 2, one has

(1− x)
[
1− 1

2
m(1− x)

]
6

1− xm

m
6 1− x , (9.6)

we obtain
1− λk−1

1− λ?k−1

= 1 +O
(
m(1− λ?k−1)

)
+O

(
∆m

1− (λ?k−1)m

)
. (9.7)

The optimal error term is obtained for m = log(σ−1) e(2η+δ)/σ2 , with δ = H(k,Mk−1)/2.
Together with Corollary 7.5, this shows that λk−1 satisfies (3.4).

As discussed in Section 4.2, applying this argument to the kernelsKu,(k) for k = 1, . . . N
shows that Ku,(N) has exactly N eigenvalues outside some disc centred in the origin. The
system (4.19) can then be used to show that the original kernel K also has exactly N
eigenvalues outside this disc, satisfying the same asymptotics.

Remark 9.1. Strictly speaking, to justify this argument, we have to make sure that the
eigenvalues of the Ku,(k) vary sufficiently slowly as functions of u. This, however, is easy to
obtain. Indeed, a standard perturbation argument shows that if K(u) is a family of linear
operators depending differentiably on u, and λ is an isolated simple eigenvalue of K(u0)
with left and right eigenfunctions π and φ, then

dλ

du
(u0) = π

dK

du
(u0)φ . (9.8)

In our case, the relevant derivative is given by

d

du
Ku(x,dy) = Ex

{(
τ+
Mk
− 1
)

e
u(τ+
Mk
−1)

1{
X
τ+
Mk

∈dy
}} . (9.9)

Proceeding as in Proposition 6.1, it is not hard to check that the norm of this operator is
of order EMk

{
τ+
Mk
− 1
}
for u as in the above computation. ♦
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To prove the spectral gap estimate (3.5), one can use the fact that

PM
c
N
{
Xm ∈Mc

N

}
6

1

2
(9.10)

form of order log(σ−1), as a consequence of (8.40), Proposition 8.4 and Markov’s inequality.
If (X̃n)n>0 = (Xmn)n>0 denotes the process diluted by a factor m, then the Laplace
transform of the first time X̃n hitsMN exists for all u such that |e−u| > 1/2. Therefore,
by the above argument, Km has exactly N eigenvalues outside a disc of radius 1/2, which
implies that K has exactly N eigenvalues outside a disc of radius e−c0/ log(σ)−1 .

Finally, the result (3.6) on the principal eigenvalue follows from the fact that the
principal eigenfunction of the process killed when hittingMk−1 satisfies

φ
Mc

k−1

0 (x) = Ex
{

euτBk φ
Mc

k−1

0

(
XτBk

)}
. (9.11)

Therefore, it is also an eigenfunction of the kernel

Ku
Bk

(x,dy) = Ex
{

e
u(τ+

Bk
−1)

1{
X
τ+
Bk

∈dy,τ+
Bk
<τ+
Mk−1

}} . (9.12)

This kernel can be approximated by

K?
Bk

(x,dy) =

∫
Bk

π̊Bi0 (z) K0
Bk

(z,dy) dz = Pπ̊
Bk
0
{
Xτ+

Bk

∈ dy, τ+
Bk

< τ+
Mk−1

}
, (9.13)

which is a rank 1 operator, whose single nonzero eigenvalue is Pπ̊
Bk
0
{
τ+
Bk

< τ+
Mk−1

}
. The

approximation arguments applied to Ku and K? apply in this case as well, because the
norm of the difference Ku

Bk
−K?

Bk
is trivially bounded above by the norm of the difference

Ku −K?.

9.2 Proof of Theorem 3.4

Recall that the kth eigenfunction φ?k−1 of K? has been obtained in Lemma 7.7, and that
‖φ?k−1‖ = 1. In order to bound the difference between φk−1 and φ?k−1, we choose a countour
C around λk−1 and consider the associated Riesz projector Πσ(Ku) (cf. (7.2)). Since
Πσ(Ku) projects on the subspace associated with λk−1, φk−1 is given, up to multiplication
by a constant, by

φk−1 = Πσ(Ku)φ?k−1 . (9.14)

We also have the relation
φ?k−1 = Πσ(K?)φ?k−1 , (9.15)

where the Riesz projector Πσ(K?) is defined with the same contour C. Taking the difference,
it follows from Proposition 7.1 that

‖φk−1 − φ?k−1‖ 6 C‖Ku −K?‖ , (9.16)

where C is defined in (7.9), provided ‖Ku − K?‖ < γ/2, cf. (7.5). An analogous bound
holds for the iterates (Ku)m and (K?)m, with a coutour around λmk−1. Choosing m as in
the previous section, and a circular contour of radius (1− λmk−1)/2, one obtains

‖φk−1 − φ?k−1‖ = O(e−θk−1/σ
2
) , (9.17)
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where θk−1 is η-close to H(k,Mk−1)/2.
Applying the Feynman–Kac relation of Proposition 4.2 with e−u = λk−1, we obtain

e−u φk−1(x) = Ex
{
φk−1(XτMk

)
}

+ Ex
{

(eu(τMk
−1)−1)φk−1(XτMk

)
}
. (9.18)

By Proposition 6.1, the second term on the right-hand side has order e−(H(k,Mk−1)+θ′−η)/σ2 .
As for the first term, it can be rewritten (recall that φ?k−1 is constant on each Bj)

k∑
j=1

Ex
{
1{

XτMk
∈Bj
}φk−1

(
XτMk

)}
=

k∑
j=1

Px
{
τBj < τMk\Bj

}
φ?k−1(x?j ) +O(e−θk−1/σ

2
) .

(9.19)
To lowest order, using Lemma 7.7 and Remark 7.4, we have φ?k−1(x?j ) = δjk +O(e−θ

−/σ2
),

which yields (3.11). The more precise expression (3.13) is based on the fact that

φ?(x?j ) = −
Pπ̊

Bj
0
{
τ+
Bk

< τ+
Mk−1

}
Pπ̊

Bk
0

{
τ+
Mk−1

< τ+
Bk

} +O(e−2θ−/σ2
) , (9.20)

as a consequence of Remark 7.4. As for the principal eigenfunction φ
Mc

k−1

0 , it satisfies

e−u φ
Mc

k−1

0 (x) = Ex
{
φ
Mc

k−1

0

(
XτBk

)
1{τBk<τMk−1

}

}
+ Ex

{(
eu(τMk

−1)−1
)
φ
Mc

k−1

0

(
XτBk

)
1{τBk<τMk−1

}

}
, (9.21)

where e−u = λ
Mc

k−1

0 . The first term on the right-hand side is equal to

Px
{
τBk < τMk−1

}(
1 +O(e−θk−1/σ

2
)
)
, (9.22)

while the second one can be bounded as above by O(e−(H(k,Mk−1)+θ′−η)/σ2
).

9.3 Proof of Theorem 3.8

Using Proposition 3.7 with A1 = B1 and A2 =MN \ B1 and the large-deviation a priori
bounds of Proposition 3.1 shows that π0(MN \B1) 6 e−θ

−/σ2
π0(B1). Together with (3.17),

this proves (3.19).
The bound (3.20) can be proved by reasoning on the stationary distribution of the Doob-

transformed process X̄Mc
k
and using the relation (2.38) between the left eigenfunctions of

both processes.
In order to prove the first relation in (3.21), we use Lemma 4.8, showing that πk−1 is a

left eigenfunction of the kernel Ku, cf. (6.1). Therefore we expect πk−1 to be close to the
left eigenfunction π?k−1 of K?. Using the block-triangularisation of Section 7.2, one easily
obtains that

π?k−1 = (π̂, 1− π̂S?12) where π̂ = (α id−T11)−1P̂21 , (9.23)

which implies

π?k−1(Bk) = 1 +O(e−θ
−/σ2

) ,

π?k−1(Bj) = −
Pπ̊

Bk
0
{
τ+
Bj
< τ+
Mk\Bj

}
Pπ̊

Bk
0

{
τ+
Mk−1

< τ+
Bk

} [1 +O(e−θ
−/σ2

)
]

for 1 6 j 6 k − 1 . (9.24)
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To compare πk−1 and π?k−1, it suffices to realise that the L1-operator norm of a kernel K,
acting on signed measures, can be bounded by supx∈Mk

K(x,Mk). Therefore, the same
bounds on ‖Ku −K?‖ and their iterates apply for the action of these operators on signed
measures, so that one can repeat the argument of the previous section showing that∣∣πk−1(Bj)− π?k−1(Bj)

∣∣ = O(e−θk−1/σ
2
) . (9.25)

Finally, the second relation in (3.21) is obained by comparing the original and killed process
monitored while visitingMj . The kernel of the original process can be approximated by
a kernel K? of rank j, while the killed process is described by the restriction of this kernel
to Bk ∪ · · · ∪ Bj . Using a similar block-triangularisation as in Section 7.2, with blocks of
size k − 1 and j − k + 1, the result follows easily.

9.4 Proof of Theorem 3.10

The result will be proved if we manage to control the oscillation of Ex
{
τ+
Mk−1

}
when x

varies in Bk. To this end, consider the process (X̂n)n, killed when hitting Mk−1 and
monitored only while visitingMk, whose kernel is K0

Bk
. If τ̂Mk−1

denotes the killing time
of X̂n, then we have

Ex
{
τ̂Mk−1

}
6 Ex

{
τ+
Mk−1

}
= Ex

{τ̂−1∑
n=0

EX̂n
{
τMk

}}
6 Ex

{
τ̂Mk−1

}
EBk

{
τMk

}
, (9.26)

so that

1 6
Ex
{
τ+
Mk−1

}
Ex
{
τ̂Mk−1

} 6 EBk
{
τMk

}
. (9.27)

It follows that
EBk

{
τ+
Mk−1

}
inf
x∈Bk

Ex
{
τ+
Mk−1

} 6 EBk
{
τ̂Mk−1

}
inf
x∈Bk

Ex
{
τ̂Mk−1

}EBk{τMk

}
. (9.28)

To control the oscillation of τ̂Mk−1
, we note that the spectral decomposition (5.4) yields

Ex
{
τ̂Mk−1

}
=
∑
n>0

(
K0
Bk

)n
(x,Bk)

=
∑
n>0

(̊
λBk0

)n{
φ̊Bk0 (x) +

(
λ̊Bk1

λ̊Bk0

)n
gn(x,Bk)

}
. (9.29)

We know that the kernel K0
Bk

satisfies the uniform positivity condition (5.7) with an n0 of
order log(σ−1). It follows that

Ex
{
τ̂Mk−1

}
=

1

1− λ̊Bk0

φ̊Bk0 (x) +O
(

1

1− %1/n0 λ̊Bk0

)
. (9.30)

Together with Proposition 5.5, this shows that the oscillation of Ex
{
τ̂Mk−1

}
is bounded

by a term of order log(σ−1) e−(H(k,Mk−1)−η)/σ2 . Combined with (9.28), this completes the
proof.
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A Doob’s h-transform

Consider a Markov process (Xn)n>0 with state space Σ and transition kernel having den-
sity k(x, y). Given a subset A ⊂ Σ, the process conditioned on remaining in A can be
constructed using the functions

hn(x) = Px{τAc > n} , (A.1)

where τAc = inf{n > 0: Xn ∈ Ac} denotes the first-exit time from A. Indeed, assuming
hn(x) > 0 for all x ∈ A, then for y ∈ A we have

Px
{
X1 ∈ dy

∣∣ τAc > n
}

=
1

hn(x)
Ex
{
1{X1∈dy}Py{τAc > n− 1}

}
=
hn−1(y)

hn(x)
Px{X1 ∈ dy} .

(A.2)
This shows that the kernel

k̄A(x, y;n) =
hn−1(y)

hn(x)
k(x, y)1{x∈A,y∈A} (A.3)

describes the process conditioned to stay in A up to time n. Thus if

k̄A(x, y) = lim
n→∞

k̄A(x, y;n) (A.4)

exists, it will describe the process conditioned on staying in A forever.
Let kA(x, y) = k(x, y)1{x∈A,y∈A} denote the kernel of the process killed upon leaving A,

and write λAi for its eigenvalues ordered by decreasing module, πAi for its left eigenfunctions
and φAi for its right eigenfunctions. Recall that the principal eigenvalue λA0 is real and
positive, and that πA0 (x) and φA0 (x) can be chosen real and positive as well. We also
choose to normalise the eigenfunctions in such a way that∫

A
πAi (x)φAj (x) dx = δij . (A.5)

Lemma A.1. Under the spectral gap condition
∣∣λA1 ∣∣ < λA0 , we have

lim
n→∞

hn−1(y)

hn(x)
=

1

λA0

φA0 (y)

φA0 (x)
. (A.6)

Proof: We can write
kA(x, y) = λA0 Π0(x, y) + k⊥(x, y) , (A.7)

where Π0(x, y) = φA0 (x)πA0 (y) is the projector on the subspace of λA0 , and the remainder
k⊥ satisfies Π0k⊥ = 0, k⊥Π0 = 0. Furthermore, k⊥ has spectral radius

∣∣λA1 ∣∣. Therefore
knA(x, y) = (λA0 )nΠ0(x, y) + k⊥(x, y)n , (A.8)

and thus
hn(x) =

∫
A
knA(x, y) dy = (λA0 )nφA0 (x) +O

(∣∣λA1 ∣∣n) . (A.9)

The result follows at once from the spectral-gap assumption.

We have thus obtained

k̄A(x, y) =
1

λA0

φA0 (y)

φA0 (x)
kA(x, y) . (A.10)
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Corollary A.2. The eigenvalues and eigenfunctions of K̄A are given by

λ̄An =
λAn
λA0

, π̄An (x) = πAn (x)φA0 (x) and φ̄An (x) =
φAn (x)

φA0 (x)
. (A.11)

Proof: A direct computation shows that KAφ
A
n = λAnφ

A
n ⇔ K̄Aφ̄

A
n = λ̄An φ̄

A
n , and similarly

for the left eigenfunctions.

B Floquet theory

Floquet theory and its application to the stability of periodic orbits is explained in many
standard text books, such as [36, Chapters III and VI]. Here we briefly recall some impor-
tant facts and notations used in the present work.

Consider a d+ 1-dimensional deterministic ODE

ż = f(z) , (B.1)

where f ∈ C2(D0,Rd+1). We assume that this system admits a periodic solution γ of period
T with associated orbit Γ. We introduce the variable ϕ ∈ R/Z and set Γ(ϕ) = γ(Tϕ).
Note that

d

dϕ
Γ(ϕ) = Tf(Γ(ϕ)) , (B.2)

so that ϕ̇ = 1/T is constant on the periodic orbit. In order to analyse the dynamics near
Γ, we start by linearising the equation. Let A(ϕ) = ∂zf(Γ(ϕ)) be the Jacobian matrix of
f at Γ(ϕ). The linearisation around the periodic orbit is given by

d

dϕ
ζ = TA(ϕ)ζ . (B.3)

Therefore ζ(ϕ) = U(ϕ,ϕ0)ζ(ϕ0), where the principal solution U(ϕ,ϕ0) satisfies

∂ϕU(ϕ,ϕ0) = TA(ϕ)U(ϕ,ϕ0), U(ϕ0, ϕ0) = id . (B.4)

Since A(ϕ) = A(ϕ + 1) for all ϕ, Floquet’s theorem allows us to decompose the principal
solution as

U(ϕ,ϕ0) = P (ϕ,ϕ0) eT (ϕ−ϕ0)B(ϕ0) , (B.5)

where P (·, ϕ0) is periodic with same period as A(·), i.e. 1, and P satisfies P (ϕ0, ϕ0) = id,
and B(ϕ0) is a constant matrix which can always be chosen to be real even if it means
taking P (·, ϕ0) to be 2−periodic. Note that P satisfies

d

dϕ
P (ϕ,ϕ0) = T

[
A(ϕ)P (ϕ,ϕ0)− P (ϕ,ϕ0)B(ϕ0)

]
. (B.6)

The asymptotic behaviour of Γ(ϕ) only depends on the eigenvalues of TB(ϕ0), which are
called characteristic exponents (or Floquet exponents) of Γ. The matrix U(1 + ϕ0, ϕ0) =
exp(TB(ϕ0)) is called the monodromy matrix in ϕ0, and its eigenvalues are called the
characteristic multipliers. Note that Floquet multipliers do not depend on ϕ0. Indeed, one
can show that all monodromy matrices are similar and thus have the same eigenvalues.
Differentiating (B.2) with respect to ϕ, we observe that

d

dϕ
Γ′(ϕ) = T

d

dϕ
f(Γ(ϕ)) = TA(ϕ)Γ′(ϕ) . (B.7)
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Thus, owing to periodicity, we have

Γ′(ϕ) = Γ′(ϕ+ 1) = U(ϕ+ 1, ϕ)Γ′(ϕ) , (B.8)

showing that 1 is an eigenvalue of U(1 + ϕ,ϕ) with eigenvector Γ′(ϕ).

Proposition B.1. There exist L > 0 and a d × d triangular matrix Λ such that system
(B.1) is equivalent for ‖x‖ < L to

ẋ = Λx+O(‖x‖2)

ϕ̇ =
1

T
+O(‖x‖2) . (B.9)

Proof: We are going to define the change of coordinates explicitly but we first introduce
some notations. Let Λ̂ = S−1BS = diag(0,Λ) be the Jordan canonical form of the constant
matrix B defined in (B.5), where Λ ∈ Rd×d. We also write P (ϕ,ϕ0)S = [u(ϕ), R(ϕ)], where
u is a column vector of dimension d + 1 and R is a matrix of dimension (d + 1) × d. It
follows from (B.6) that the vector u and the matrix R satisfy the equations

u′(ϕ) = TA(ϕ)u(ϕ) ,

R′(ϕ) = T (A(ϕ)R(ϕ)−R(ϕ)Λ) . (B.10)

Note that we can choose the matrix S such that u(ϕ) = Γ′(ϕ).
We now introduce the transformation

z = Γ(ϕ) +R(ϕ)x . (B.11)

We can first check that this transformation is well defined in a neighbourhood of Γ. Indeed,
if F (z, x, ϕ) = Γ(ϕ) +R(ϕ)x− z, the partial derivatives of F with respect of x and ϕ are

∂F

∂ϕ
= Γ′(ϕ) +R′(ϕ)x ,

∂F

∂x
= R(ϕ) . (B.12)

For x = 0, we have det [∂ϕF, ∂xF ] 6= 0 for all ϕ, since [Γ′(ϕ), R(ϕ)] is the matrix P (ϕ,ϕ0)S
which is invertible.

If z(t) = Γ(ϕ(t)) +R(ϕ(t))x(t) satisfies ż = f(z) then

f(Γ(ϕ) +R(ϕ)x) = ϕ̇Γ′(ϕ) + ϕ̇R′(ϕ)x+R(ϕ)ẋ . (B.13)

Performing a Taylor expansion of the left-hand side and using (B.10), we obtain

O(‖x‖2) =
(
ϕ̇− 1

T

)[
Γ′(ϕ) + TA(ϕ)R(ϕ)x

]
+R(ϕ)(ẋ− ϕ̇TΛx) . (B.14)

The result follows by projecting on a normal vector to the space generated by the column
vectors of R.
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