Conservative scheme for two-fluid compressible flows without pressure oscillations
Résumé
Compressible two-fluid flows are difficult to numerically simulate. Indeed, classic conservative finite volume schemes do not preserve the velocity and pressure equilibrium at the two-fluid interface. This leads to oscillations, lack of precision and even, in some liquid-gas simulations, to the crash of the computation. Several cures have been proposed to obtain better schemes (see [1] and included references). The resulting schemes are generally not conservative. Based on ideas of [2], we propose a new Lagrange-Projection scheme. The projection step is based on a random sampling strategy at the interface. The scheme has the following properties: it preserves constant velocity and pressure at the two-fluid interface, it preserves a perfectly sharp interface and it is fully conservative (in a statistical sense). The scheme can be extended to higher space dimensions through Strang dimensional splitting. Finally, it is very simple to implement and thus well adapted to massively parallel GPU computations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...