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Conservative scheme for two-fluid compressible flows without pressure
oscillations

Helluy, Philippe
(joint work with Jung, Jonathan)

Compressible two-fluid flows are difficult to numerically simulate. Indeed, clas-
sic conservative finite volume schemes do not preserve the velocity and pressure
equilibrium at the two-fluid interface. This leads to oscillations, lack of precision
and even, in some liquid-gas simulations, to the crash of the computation. Several
cures have been proposed to obtain better schemes (see [1] and included refer-
ences). The resulting schemes are generally not conservative. Based on ideas of
[2], we propose a new Lagrange-Projection scheme. The projection step is based
on a random sampling strategy at the interface. The scheme has the following
properties: it preserves constant velocity and pressure at the two-fluid interface,
it preserves a perfectly sharp interface and it is fully conservative (in a statistical
sense). The scheme can be extended to higher space dimensions through Strang
dimensional splitting. Finally, it is very simple to implement and thus well adapted
to massively parallel GPU computations.

We are interested in the numerical resolution of the following system of partial
differential equations, modeling a liquid-gas compressible flow

(1) ∂tW + ∂xF (W ) = 0,

where

W = (ρ, ρu, ρv, ρE, ρϕ)T , F (W ) = (ρu, ρu2 + p, ρuv, (ρE + p)u, ρuϕ)T .

The unknowns are the density ρ, the two components of the velocity u, v, the
internal energy e and the mass fraction of gas ϕ. The unknowns depend on the
space variables x and on the time variable t. The total energy E is the sum of the
internal energy and the kinetic energy E = e+(u2+v2)/2.The pressure p of the two-
fluid medium is a function of the other thermodynamical parameters p = p(ρ, e, ϕ).
We consider a stiffened gas pressure law p(ρ, e, ϕ) = (γ(ϕ)−1)ρe−γ(ϕ)π(ϕ),where
γ and π are given functions of the mass fraction ϕ, and γ(ϕ) > 1.

At the initial time, the mass fraction ϕ(x, y, 0) = 1 if the point (x, y) is in
the gas region and ϕ(x, y, 0) = 0 if the point (x, y) is in the liquid region. The
mass fraction is transported with the flow, which implies that for any time t > 0,
ϕ(x, y, t) can take only the two values 0 or 1. However, classic numerical schemes
generally produce an artificial diffusion of the mass fraction, and in the numerical
approximation we may observe 1 > ϕ > 0. In classic conservative schemes, the
artificial mixing zone implies a loss of the velocity and pressure equilibrium at the
interface.

We construct a better numerical scheme for solving (1). We consider a sequence
of time tn, n ∈ N such that the time step τn = tn+1 − tn > 0. We consider also
a space step h. We define the cell centers by xi = ih. The cell Ci is the interval
]xi−1/2, xi+1/2[. We look for an approximationWn

i 'W (xi, tn). Each time step of
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the scheme is made of two stages: an Arbitrary Lagrangian Eulerian (ALE) step
and a Projection step.
ALE stage. In the first stage, we allow the cell boundaries xi+1/2 to move at a
velocity ξni+1/2. At the end of the first stage, the cell boundary is

xn+1,−
i+1/2 = xi+1/2 + τnξ

n
i+1/2.

Integrating the conservation law (1) on the moving cells, we obtain the following
finite volume approximation

hn+1,−
i Wn+1,−

i − hWn
i + τn(F

n
i+1/2 − F

n
i−1/2) = 0.

The new size of cell i is given by

hn+1,−
i = xn+1,−

i+1/2 − x
n+1,−
i-1/2 = h+ τn(ξ

n
i+1/2 − ξ

n
i−1/2).

The numerical flux is of the form

Fni+1/2 = F (Wn
i+1/2)− ξ

n
i+1/2W

n
i+1/2.

The intermediate stateWn
i+1/2 is obtained by the resolution of a Riemann problem.

More precisely, we consider the entropy solution of

∂tV + ∂xF (V ) = 0,

V (x, 0) =

{
VL if x < 0,
VR if x > 0,

which is denoted by R(VL, VR, x/t) = V (x, t). The intermediate state is then
Wn
i+1/2 = R(Wn

i ,W
n
i+1, ξ

n
i+1/2). In practice, R can also be an approximate Rie-

mann solver.
Finally, the interface velocity is defined by

(2) ξni+1/2 =

{
uni+1/2 if (ϕni − 1/2)(ϕni+1 − 1/2) < 0,

0 else.

The numerical flux is thus a classic Godunov flux in the pure fluid. It is a La-
grangian numerical flux at the two-fluid interface.
Projection step. The second stage of the time step is needed for returning to the
initial mesh. We have to compute on the cells Ci of the initial mesh the averages
of Wn+1,−

i , defined on the moved cells Cn+1,−
i =]xn+1,−

i−1/2 , x
n+1,−
i+1/2 [. Instead of a

standard integral averaging method, we rather consider a random sampling aver-
aging process. We consider a pseudo random sequence ωn ∈ [0, 1[ and we perform
the following sampling

(3) Wn+1
i =


Wn+1,−
i−1 , if ωn <

ξni−1/2τn

h ,

Wn+1,−
i , if

ξni−1/2τn

h ≤ ωn ≤ 1 +
ξni+1/2τn

h ,

Wn+1,−
i+1 , if ωn > 1 +

ξni+1/2τn

h .

A good choice for the pseudo-random sequence ωn is the (k1, k2) van der Corput
sequence. In practice, we consider the (5, 3) van der Corput sequence.
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Figure 1. Shock-droplet simulation. Density plot.

We can extend the scheme to higher dimensions with dimensional splitting
(more details in [3]). It is remarkable that the same random number can be used
for one time step in the x and y directions. We present in Figure 1 the results
of a two-dimensional shock-droplet GPU simulation. We observe that we are able
to capture a sharp interface and small Kelvin-Helmholtz vortices. The numerical
noise is moderate, despite the random nature of the scheme.
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