Exponential sums and correctly-rounded functions
Résumé
The 2008 revision of the IEEE-754 standard, which governs floating-point arithmetic, recommends that a certain set of elementary functions should be correctly rounded. Successful attempts for solving the Table Maker's Dilemma in binary64 made it possible to design CRlibm, a library which offers correctly rounded evaluation in binary64 of some functions of the usual libm. It evaluates functions using a two step strategy, which relies on a folklore heuristic that is well spread in the community of mathematical functions designers. Under this heuristic, one can compute the distribution of the lengths of runs of zeros/ones after the rounding bit of the value of the function at a given floating-point number. The goal of this paper is to change, whenever possible, this heuristic into a rigorous statement. The underlying mathematical problem amounts to counting integer points in the neighborhood of a curve, which we tackle using so-called exponential sums techniques, a tool from analytic number theory.
Origine | Fichiers produits par l'(les) auteur(s) |
---|