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Exponential sums and correctly-rounded
functions

Nicolas Brisebarre, Guillaume Hanrot and Olivier Robert

Abstract—The 2008 revision of the IEEE-754 standard, which governs floating-point arithmetic, recommends that a certain set of
elementary functions should be correctly rounded. Successful attempts for solving the Table Maker’s Dilemma in binary64 made it
possible to design CRlibm, a library which offers correctly rounded evaluation in binary64 of some functions of the usual libm. It
evaluates functions using a two step strategy, which relies on a folklore heuristic that is well spread in the community of mathematical
functions designers. Under this heuristic, one can compute the distribution of the lengths of runs of zeros/ones after the rounding bit of
the value of the function at a given floating-point number. The goal of this paper is to change, whenever possible, this heuristic into a
rigorous statement. The underlying mathematical problem amounts to counting integer points in the neighborhood of a curve, which we
tackle using so-called exponential sums techniques, a tool from analytic number theory.

F

1 INTRODUCTION

On most current computer systems, real numbers are approx-
imated and represented by floating-point numbers [29]. For
many years, floating-point arithmetic has been a mere set
of cooking recipes, a situation described for instance in [18],
and numerical programs were not reliable nor portable.

The IEEE-754 [8], [1] standard, and its revision [16], [26],
for binary floating-point arithmetic (and the radix indepen-
dent IEEE-854 [7], [2] standard that followed) drastically
improved the situation and put an end to this dangerous
era. In particular, the IEEE-754 standard clearly specifies
the formats of the floating-point representations of numbers,
and the behaviour of the four arithmetic operations and the
square root.

And yet, as of today, the standard still does not rule the
behaviour of usual functions, such as the ones contained in
the C mathematical library (libm), as precisely as it does
for the four arithmetic operations and the square root. Part
of a general effort to improve this situation[29], this paper
presents a novel rigorous approach for estimating the amount
of so-called bad cases for rounding. As we shall see below,
it is useful to design function evaluation routines with a
higher quality of computation called correct rounding, and
in particular, it plays a key role in order to estimate their
performances.
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1.1 Our arithmetic framework
Let 𝒟𝑝 denote the set of exponent-unbounded, 𝑝-bit signifi-
cand, radix-2 floating-point numbers (with 𝑝 > 1):

𝒟𝑝 =
{︁
𝑗 · 2𝐸−𝑝+1, 2𝑝−1 6 |𝑗| 6 2𝑝 − 1, 𝑗, 𝐸 ∈ Z

}︁
∪ {0}.

This set is not the set of available floating-point numbers on
an existing system. It is an “ideal” system of floating-point
numbers: a superset of an actual system, with no overflows,
underflows, or subnormals [16], [29]. We prove results in 𝒟𝑝.
These results remain true in an actual system, provided that
no overflows, underflows or subnormals occur.

We call significand of a nonzero element 𝑥 = 𝑗 · 2𝐸−𝑝+1

of 𝒟𝑝 the number 𝑗/2𝑝−1 and integral significand of 𝑥 the
integer 𝑗. The exponent of an element 𝑗 ·2𝐸−𝑝+1, with 2𝑝−1 6
|𝑗| 6 2𝑝 − 1, is the integer 𝐸.

The result of an arithmetic operation whose input values
belong to 𝒟𝑝 may not belong to 𝒟𝑝 (in general it does
not). Hence that result must be rounded. The IEEE standard
defines 4 different rounding modes; in the sequel, 𝑥 is any
real number to be rounded:

∙ rounding towards +∞, or upwards: ∘𝑢(𝑥) is the
smallest element of 𝒟𝑝 that is greater than or equal to
𝑥;

∙ rounding towards −∞, or downwards: ∘𝑑(𝑥) is the
largest element of 𝒟𝑝 that is less than or equal to 𝑥;

∙ rounding towards 0: ∘𝑧(𝑥) is equal to ∘𝑢(𝑥) if 𝑥 < 0,
and to ∘𝑑(𝑥) otherwise;

∙ rounding to the nearest even: ∘𝑛(𝑥) is the element of
𝒟𝑝 that is closest to 𝑥. If 𝑥 is exactly halfway between
two consecutive elements of 𝒟𝑝, ∘𝑛(𝑥) is the one for
which the integral significand 𝑗 is an even number.

The first three rounding modes are called directed round-
ing modes.

1.2 Correct rounding
The standard requires that the user should be able to choose
one rounding mode among these ones, called the active
rounding mode. An active rounding mode being chosen, when
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performing one of the 4 arithmetic operations, or when
computing square roots, the obtained rounded result should
be equal to the rounding of the exact result: this requirement
on the quality of the computation is called correct rounding.

While the IEEE 754-1985 and 854-1987 standards required
correctly rounded arithmetic operations, they did not do
it for the most common mathematical functions, such as
simple algebraic1 functions like 1/

√
·, 3
√
·, . . . and also a few

transcendental2 functions like sine, cosine, exponentials, and
logarithms of radices 𝑒, 2, and 10, etc. More generally, a
natural target is the whole class of elementary functions3. A
subset of these functions is usually available from the libms
delivered with compilers.

This lack of requirement is mainly due to a difficult
problem known as the Table Maker’s Dilemma (TMD), a
term coined by Kahan, which we present below.

Being able to provide correctly rounded functions is of
utter interest:

∙ it greatly improves the portability of software;
∙ it allows one to design algorithms that use this

requirement;
∙ this requirement can be used for designing formal

proofs of pieces of software;
∙ one can easily implement interval arithmetic, or

more generally one can get certain lower or upper
bounds on the exact result of a sequence of arithmetic
operations.

1.3 Implementation of correctly-rounded functions:
Ziv’s strategy
A. Ziv proposed a general methodology [37], implemented
in the libultim library4, that made possible the correctly
rounded evaluation of the functions of the libm. It consists
in iteratively improving the accuracy of the approximation
until the correctly rounded value can be decided.

However, there was, up until recently, no practical bound
on the termination time of Ziv’s iteration: it may be proven to
terminate for some transcendental functions, but the actual
maximal accuracy required in the worst case was unknown.
Note that in order to prove that Ziv’s iteration terminates
for a given real-valued function 𝜙 and a given floating-point
number 𝑥, one has to guarantee a priori that 𝜙(𝑥) ̸∈ 𝒟𝑝

(directed rounding modes) or 𝜙(𝑥) is not the middle of
two consecutive elements of 𝒟𝑝 (rounding to nearest mode).
One has to deal separately with the exact cases such as
exp(0), log(1), sin(0) or 3

√
𝑥3 for 𝑥 ∈ 𝒟⌊𝑝/3⌋ etc. [21], [22],

[28].
Unfortunately, for many applications, this is not satisfac-

tory, for several reasons:

∙ in libultim, the measured worst-case execution
time is indeed three orders of magnitude larger than
that of the usual libms;

1. We say that a function 𝜙 is algebraic if there exists 𝑃 ∈ Z[𝑥, 𝑦] ∖ {0}
such that 𝑃 (𝑥, 𝜙(𝑥)) = 0.

2. A function is transcendental if it is not algebraic.
3. An elementary function is a function of one variable which is the

composition of a finite number of arithmetic operations (+, −, ×, /),
exponentials, logarithms, constants, and solutions of algebraic equations.

4. libultim was released by IBM. An updated version is now part of
the GNU glibc and available under the GNU General Public License.

∙ A related problem is memory requirement, which is,
for the same reason, unbounded in theory and much
higher than the usual libms in practice;

∙ when the approximations are evaluated using a fast
pipelined multiplier or multiplier-accumulator, the
tests required by the previous strategy would require
to wait many cycles before being able to restart the
computation;

∙ for real-time applications, the delay of computation
must be bounded.

1.4 Fast and cheap correctly-rounded function evalua-
tion in binary64

For most of elementary functions, when evaluating them, one
has to compute some approximation to the exact result, with
an accuracy (which is then a rational integer power of the
radix 2) somewhat higher than the “target” precision 𝑝. The
Table Maker’s Dilemma is the problem of determining what
the accuracy of this approximation should be to make sure
that rounding that approximation will always be equivalent
to rounding the exact result. Ideally, we aim at getting the
minimal possible accuracy.

On the one hand, there are theoretical results that yield -
not fully satisfactory - solutions for algebraic functions: the
precision which the computations must be performed to is,
in general, overestimated [17], [20], [6]. On the other hand,
regarding transcendental functions, either no theoretical
statement exists or they provide results that cannot be used
in practical computations [30].

Therefore, algorithmic approaches to the TMD [23],
[24], [34] had to be developed. They allowed for solving
the TMD for the IEEE binary64 (also known as "double
precision"). As a consequence, the revised IEEE-754 standard
now recommends (yet does not require, due to the lack of
results in the case of binary128) that the following functions
should be correctly rounded: 𝑒𝑥, 𝑒𝑥 − 1, 2𝑥, 2𝑥 − 1, 10𝑥,
10𝑥 − 1, ln(𝑥), log2(𝑥), log10(𝑥), ln(1 + 𝑥), log2(1 + 𝑥),
log10(1+𝑥),

√︀
𝑥2 + 𝑦2, 1/

√
𝑥, (1+𝑥)𝑛, 𝑥𝑛, 𝑥1/𝑛 (𝑛 is an inte-

ger), sin(𝜋𝑥), cos(𝜋𝑥), arctan(𝑥)/𝜋, arctan(𝑦/𝑥)/𝜋, sin(𝑥),
cos(𝑥), tan(𝑥), arcsin(𝑥), arccos(𝑥), arctan(𝑥), arctan(𝑦/𝑥),
sinh(𝑥), cosh(𝑥), tanh(𝑥), sinh−1(𝑥), cosh−1(𝑥), tanh−1(𝑥).

Thanks to these results, it is now possible to obtain correct
rounding in binary64 in two Ziv steps only, which one
may then optimize separately. This is the approach used in
CRlibm5, a library which offers correctly rounded evaluation
of the double-precision C99 standard elementary functions:

∙ the first quick step is as fast as a current libm, and
provides an accuracy of 2−52−𝑘 (𝑘 = 11 for the
exponential function for instance), which is sufficient
to round correctly to the 53 bits of binary64 in most
cases;

∙ the second accurate step is dedicated to challenging
cases. It is slower but has a reasonable bounded
execution time, being tightly targeted at the hardest-
to-round cases computed by Lefèvre et al. [25], [24],
[33], [34], [32]. In particular, there is no need for
arbitrary multiple precision anymore.

5. http://lipforge.ens-lyon.fr/www/crlibm/

http://lipforge.ens-lyon.fr/www/crlibm/
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This approach [9], [10] leads to correctly-rounded function
evaluation routines that are fast and have a reasonable
memory consumption.

1.5 A heuristic probabilistic approach
This strategy relies on the following heuristic assumption
about the first step: the proportion of “bad cases”, that is
to say the floating-point numbers whose evaluation cannot
be correctly rounded if we use 2−52−𝑘 as an intermediate
accuracy, is around 21−𝑘. One can find such an estimate used
in [11] and a probabilistic study has been done in [13]. We
now briefly recall the intuition behind this heuristic (see [28],
[29] for a more detailed presentation).

Let 𝜙 be a real-valued function, assume that after the
𝑝th bit, the bits of the significands of the values 𝜙(𝑥), where
𝑥 is a floating-point number, are sequences of independent
random 0 or 1 with equal probability 1/2. The probability
that after bit 𝑝, we have

∙ in rounding to nearest mode, the bit sequence

100 · · · 0⏟  ⏞  
𝑘 bits

or 011 · · · 1⏟  ⏞  
𝑘 bits

∙ or, in directed rounding modes, the bit sequence

00 · · · 0⏟  ⏞  
𝑘 bits

or 11 · · · 1⏟  ⏞  
𝑘 bits

is 2−𝑘+1. Hence, if we have 𝑁 floating-point numbers in the
domain being considered, the number of values 𝑥 for which
we will have a bit sequence of the form indicated above is,
under the probabilistic model stated above, around 𝑁2−𝑘+1.

1.6 Goal and outline of the paper
The assumption on which this approach relies is a very strong
one, and, actually, is wrong in full generality (one can think,
for instance, of the exponential function around 0). And yet,
it seems to be satisfied in most cases and as of today, proving
it seems completely out of reach. The goal of this paper is to
give solid theoretical foundations to this heuristic probability
for certain ranges of values of 𝑘. We target in particular the
values of 𝑘 that CRlibm uses in practice. For instance, our
results prove in particular that:

∙ in binary64, for 𝑘 = 11, the number of bad cases for

– 3
√
· over [1/2, 1) lies between (1 − 0.058) · 242

and (1+0.058)·242, which leads to a probability
between (1−0.058) ·2−10 and (1+0.058) ·2−10

for the occurrence of the second accurate step;
– exp over [1, 2) lies between (1−0.054) ·242 and

(1 + 0.054) · 242, which leads to a probability
between (1−0.054) ·2−10 and (1+0.054) ·2−10

for the occurrence of the second accurate step;

∙ in binary128, for 𝑘 = 32, the number of bad cases for

– 3
√
· over [1/2, 1) lies between (1 − 0.112) · 281

and (1+0.112)·281, which leads to a probability
between (1−0.112) ·2−31 and (1+0.112) ·2−31

for the occurrence of the second accurate step;
– exp over [1, 2) lies between (1− 0.11) · 281 and

(1 + 0.11) · 281, which leads to a probability

between (1− 0.11) · 2−31 and (1 + 0.11) · 2−31

for the occurrence of the second accurate step.

We shall start with a mathematical formalization of the
problem we address. This will be done in Section 2. In
Section 3, we shall present estimates, proved thanks to
the so-called exponential sums techniques, a mathematical
tool at the core of our study. These objects and the related
theory are powerful tools mainly used in Analytic Number
Theory [14], [15], [27], [35], [19], [31]. Then, in Section 4, we
shall apply the results of Section 3 to elementary functions.
This will enable us to estimate the number of occurrences
of the second accurate step of the two Ziv step strategy, like
the one used in the CRlibm design. We shall also analyze
the constraints imposed by our approach (in particular, the
ranges the parameter 𝑘 should belong to) and present in
more detail the cases of the 3

√
· and exp functions. We shall

report experiments with these two functions in binary64 and
binary128 in order to evaluate the quality of our estimates.

Up to a renormalization (which associates a function 𝑓 to
the function 𝜙, see (18) and (19)), our problem can be seen as
a question about the number of integers𝑚 in some interval of
the form [1,𝑀 ] such that the distance of 𝑓(𝑚) to the integers
is less than some 𝛿 > 0. This problem, which amounts to
counting integer points (𝑚,𝑛) in the 𝛿-neighbourhood of the
curve 𝑦 = 𝑓(𝑥), will be treated in Section 3, which is the
core of the paper. The main term of this number of points is
expected to be 2𝑀𝛿. We shall express the error term as a sum
of periodic functions (namely fractional parts), and control
this error term using an optimal truncation of the Fourier
series introduced by Vaaler (Theorem 1). The problem then
reduces to estimating exponential sums, for which we shall
use van der Corput’s inequality (Theorem 2).

Note that, actually, our results are valid for any 𝒞2

function6, and not only for elementary functions.
Our work may be considered as complementary to the

algorithmic determinations of the worst cases for correct
rounding [23], [24], [34] in two ways:

∙ while their works allow for a worst case analysis of
an elementary function implementation, our paper
provides an attempt for a rigorous average case
analysis of such an implementation. We shall come
back to this in Remark 2.

∙ as the reader will notice in Subsection 4.1, our ap-
proach, roughly, works for values of 𝑘 up to 𝑝/3
bits. In this range, the aforementioned algorithmic
approaches may prove pointless since that there are
too many values to determine, whereas our approach
makes it possible to estimate the amount of bad cases
for rounding in a satisfactory way.

2 FORMALIZATION OF THE PROBLEM

Assume we wish to correctly round an elementary function
𝜙 (actually, our formalization is valid for any real-valued
function). We consider that all input values are elements of
𝒟𝑝 with the same exponent 𝑒1. A different analysis must be
done for each possible value of 𝑒1.

6. Recall that a 𝒞ℓ function over an interval 𝐼 , ℓ > 0, is a function that
is ℓ-times differentiable and whose ℓ-th derivative is continuous.
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Note that if 𝑥 is a bad case for 𝜙, then it is also a bad case
for −𝜙 and −𝑥 is a bad case for 𝑡 ↦→ 𝜙(−𝑡) and 𝑡 ↦→ −𝜙(−𝑡).
Hence we can assume that 𝑥 > 0 and 𝜙(𝑥) > 0.

If the values of 𝜙(𝑥), for 𝑥 ∈ [2𝑒1 , 2𝑒1+1), are not all
included in the binade7 [2𝑒2 , 2𝑒2+1), we split the input
interval into subintervals such that for each subinterval,
there is a rational integer 𝑒2 such that the values 𝜙(𝑥), for 𝑥
in the subinterval, are in [2𝑒2 , 2𝑒2+1).

We now consider the processing of one subinterval 𝐼
included in [2𝑒1 , 2𝑒1+1).

In rounding to nearest mode, the problem to be solved
is the following:

Problem 1 (Rounding to nearest mode). Given 𝑘 ∈ N, estimate
the number of integers 𝑋 , 2𝑝−1 6 𝑋 6 2𝑝 − 1 (and, possibly, the
restrictions implied by 𝑋/2−𝑒1+𝑝−1 ∈ 𝐼) such that there exists
𝑌 ∈ N, 2𝑝−1 6 𝑌 6 2𝑝 − 1,⃒⃒⃒⃒

𝜙

(︂
𝑋

2−𝑒1+𝑝−1

)︂
− 2𝑌 + 1

2−𝑒2+𝑝

⃒⃒⃒⃒
< 2𝑒2−𝑝−𝑘.

In directed rounding modes, the problem to be solved
is the following:

Problem 2 (Directed rounding modes). Given 𝑘 ∈ N, estimate
the number of integers 𝑋 , 2𝑝−1 6 𝑋 6 2𝑝 − 1 (and, possibly, the
restrictions implied by 𝑋/2−𝑒1+𝑝−1 ∈ 𝐼) such that there exists
𝑌 ∈ N, 2𝑝−1 6 𝑌 6 2𝑝 − 1,⃒⃒⃒⃒

𝜙

(︂
𝑋

2−𝑒1+𝑝−1

)︂
− 𝑌

2−𝑒2+𝑝−1

⃒⃒⃒⃒
< 2𝑒2−𝑝−𝑘.

Now, we introduce the mathematical tools that will allow
us to tackle Problems 1 and 2.

3 SOME EXPONENTIAL SUMS-BASED ESTIMATES

First, let us mention that the reader who is mainly interested
in the applications to the design of mathematical functions
should focus on Theorem 3, Lemma 4 and Corollary 1, which
are the technical results that will be used in practice.

Several deep results (see [3], [4], [5] for instance) in
Analytic Number Theory rely on non-trivial bounding of the
modulus of sums of the form

∑︀
𝑎<𝑚6𝑎+𝑀 e(𝑓(𝑚)), where

𝑎 ∈ Z, 𝑀 ∈ N, 𝑓 : [𝑎 + 1, 𝑎 +𝑀 ] → R is a 𝒞𝑘 function
with 𝑘 > 1 and e(𝑡) := exp(2𝑖𝜋𝑡), 𝑡 ∈ R. The developed
techniques prove very useful for estimating the number
of integer points in the neighborhood of a curve, which
actually is the usual context we face when we tackle the Table
Maker’s Dilemma. In-depth expositions of these techniques
are presented in [14], [15], [27].

In the present paper we shall use techniques based on
the second derivative, and thus assume 𝑓 to be a 𝒞2 function;
first-order techniques (à la Kuzmin-Landau) do not apply
to the present context, while higher order methods (when
applicable) yield worse upper bounds, probably useless in
the formats we are interested in (typically binary64 and
binary128).

Given 0 < 𝜂 < 1/2, we want to establish estimates of the
value

ℛ(𝑓 ; 𝜂) := #
{︀
1 6 𝑚 6𝑀, ‖𝑓(𝑚)‖ < 𝜂

}︀
, (1)

7. A binade is an interval of the form [2𝑘, 2𝑘+1) or (−2𝑘+1,−2𝑘] for
𝑘 ∈ Z.

where ||𝑥|| denotes the distance of the real number 𝑥 to Z:
||𝑥|| = min({𝑥}, 1−{𝑥}), and {𝑥} = 𝑥−⌊𝑥⌋ is the fractional
part of 𝑥.

When 𝜂 = 0, we set

ℛ(𝑓 ; 0) := # {1 6 𝑚 6𝑀, 𝑓(𝑚) ∈ Z} .

In our work, we follow the approach developed by Vaaler
in [36]. Let 𝜓(𝑡) denote the normalized fractional part

𝜓(𝑡) := 𝑡− ⌊𝑡⌋ − 1
2 (𝑡 ∈ R).

The proof of our main result requires estimates of sums of
fractional parts. Since our aim is to obtain upper bounds with
suitable numerical constants, we shall use an appropriate
approximation of 𝜓(𝑡), and a result due to Vaaler.

We consider the following function

̂︀𝐽(𝑡) :=
⎧⎨⎩

1 if 𝑡 = 0,
𝜋𝑡(1− |𝑡|)cot(𝜋𝑡) + |𝑡| if 0 < |𝑡| < 1,
0 if |𝑡| > 1.

The (Fourier series type) approximation of 𝜓 we have in
mind is the following:

𝜓*
𝐻(𝑡) := −

∑︁
16|ℎ|<𝐻

̂︀𝐽 (︀
ℎ
𝐻

)︀
2𝑖𝜋ℎ

e(ℎ𝑡), 𝑡 ∈ R, 𝐻 ∈ N.

We start by recalling an upper bound for the approximation
error:

Theorem 1. [36] Using previous notation, one has, for 𝑡 ∈
R, 𝐻 ∈ N,

|𝜓(𝑡)− 𝜓*
𝐻(𝑡)| 6 1

2𝐻

∑︁
|ℎ|<𝐻

(︂
1− |ℎ|

𝐻

)︂
e(ℎ𝑡).

We shall now give an upper bound for ℛ(𝑓 ; 0) in terms
of exponential sums.

Lemma 1. For any function 𝑓 : [1,𝑀 ] → R, one has

ℛ(𝑓 ; 0) 6
1

𝐻

∑︁
|ℎ|<𝐻

(︂
1− |ℎ|

𝐻

)︂ 𝑀∑︁
𝑚=1

e (ℎ𝑓(𝑚)) (2)

for any 𝐻 ∈ N.

Proof: We note that for any 𝐻 ∈ N the term

1

𝐻2

⃒⃒⃒⃒
⃒

𝐻∑︁
ℎ=1

e(ℎ𝑡)

⃒⃒⃒⃒
⃒
2

=
1

𝐻

∑︁
|ℎ|<𝐻

(︂
1− |ℎ|

𝐻

)︂
e(ℎ𝑡)

is nonnegative for any 𝑡 ∈ R, and is 1 for 𝑡 ∈ Z. It follows
that

ℛ(𝑓 ; 0) 6
𝑀∑︁

𝑚=1

1

𝐻

∑︁
|ℎ|<𝐻

(︂
1− |ℎ|

𝐻

)︂
e (ℎ𝑓(𝑚)) ,

which gives the expected result.
We are now ready to state our main lemma.

Lemma 2. Let 𝛿 ∈ R>0, and 𝑀,𝐻 ∈ N. Then for any function
𝑓 : [1,𝑀 ] → R one has

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 𝐸1(𝐻) + 𝐸2(𝐻) +ℛ(𝑓 + 𝛿; 0) (3)

and
|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 𝐸1(𝐻) + 2𝐸2(𝐻) (4)



5

where we have set

𝐸1(𝐻) := 2
𝐻−1∑︁
ℎ=1

| sin(2𝜋𝛿ℎ)|
𝜋ℎ

⃒⃒⃒⃒
⃒

𝑀∑︁
𝑚=1

e (ℎ𝑓(𝑚))

⃒⃒⃒⃒
⃒ , (5)

𝐸2(𝐻) :=
1

𝐻

∑︁
|ℎ|<𝐻

(︂
1− |ℎ|

𝐻

)︂ ⃒⃒⃒⃒
⃒

𝑀∑︁
𝑚=1

e (ℎ𝑓(𝑚))

⃒⃒⃒⃒
⃒ . (6)

Proof: We have

ℛ(𝑓 ; 𝛿) =
𝑀∑︁

𝑚=1

#{𝜈 ∈ Z : 𝑓(𝑚)− 𝛿 < 𝜈 < 𝑓(𝑚) + 𝛿}

=
𝑀∑︁

𝑚=1

(⌊𝑓(𝑚) + 𝛿⌋ − ⌊𝑓(𝑚)− 𝛿⌋)−ℛ(𝑓 + 𝛿; 0)

= 2𝑀𝛿 +
𝑀∑︁

𝑚=1

(𝜓 (𝑓(𝑚)− 𝛿)− 𝜓 (𝑓(𝑚) + 𝛿))

−ℛ(𝑓 + 𝛿; 0).

Now let

𝐸 :=
𝑀∑︁

𝑚=1

(𝜓 (𝑓(𝑚)− 𝛿)− 𝜓 (𝑓(𝑚) + 𝛿))

and

𝐸*
𝐻 :=

𝑀∑︁
𝑚=1

(𝜓*
𝐻 (𝑓(𝑚)− 𝛿)− 𝜓*

𝐻 (𝑓(𝑚) + 𝛿)) .

Then

|𝐸 − 𝐸*
𝐻 | 6

𝑀∑︁
𝑚=1

|𝜓 (𝑓(𝑚)− 𝛿)− 𝜓*
𝐻 (𝑓(𝑚)− 𝛿) |

+
𝑀∑︁

𝑚=1

|𝜓 (𝑓(𝑚) + 𝛿)− 𝜓*
𝐻 (𝑓(𝑚) + 𝛿) |.

Now Theorem 1 implies that for 𝜂 = ±𝛿 one has

𝑀∑︁
𝑚=1

|𝜓 (𝑓(𝑚) + 𝜂)− 𝜓*
𝐻 (𝑓(𝑚) + 𝜂) |

6
1

2𝐻

∑︁
|ℎ|6𝐻

(︂
1− |ℎ|

𝐻

)︂ 𝑀∑︁
𝑚=1

e (ℎ (𝑓(𝑚) + 𝜂))

6
1

2𝐻

∑︁
|ℎ|6𝐻

(︂
1− |ℎ|

𝐻

)︂ ⃒⃒⃒⃒
⃒

𝑀∑︁
𝑚=1

e (ℎ𝑓(𝑚))

⃒⃒⃒⃒
⃒ ,

so that
|𝐸 − 𝐸*

𝐻 | 6 𝐸2(𝐻).

Next, we prove that |𝐸*
𝐻 | 6 𝐸1(𝐻). Indeed

𝐸*
𝐻 =

𝑀∑︁
𝑚=1

𝐻−1∑︁
|ℎ|=1

̂︀𝐽 (︀
ℎ
𝐻

)︀
2𝑖𝜋ℎ

(e(ℎ(𝑓(𝑚)− 𝛿))− e(ℎ(𝑓(𝑚) + 𝛿)))

=
∑︁

16|ℎ|<𝐻

̂︀𝐽 (︀
ℎ
𝐻

)︀
𝜋ℎ

sin(−2𝜋𝛿ℎ)
𝑀∑︁

𝑚=1

e (ℎ(𝑓(𝑚)))

and the expected upper bound follows from the estimate⃒⃒⃒ ̂︀𝐽(𝑡)⃒⃒⃒ 6 1 for 𝑡 ∈ R.

Finally, writing

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 |𝐸*
𝐻 |+ |𝐸 − 𝐸*

𝐻 |+ℛ(𝑓 + 𝛿; 0)

and using the previous estimates yields (3).
Now, to prove (4), it is sufficient to check that ℛ(𝑓 +

𝛿; 0) 6 𝐸2(𝐻). This follows at once from (2).

Remark 1. The reader may have noticed that Lemma 2 provides
two upper bounds for the same error |ℛ(𝑓 ; 𝛿)−2𝑀𝛿|. The reason
is the following: in practice, we shall set 𝛿 = 2−𝑘, 𝑘 ∈ N and
there are functions, such as exp or cos for instance, for which we
will be able to estimate precisely the quantity ℛ(𝑓 + 2−𝑘; 0). In
this case, inequality (3) will give us a better information than (4).
However, the latter has the advantage of being general.

Theorem 3 and Corollary 1 are presented the same way, for the
same reason.

We will need the following technical inequalities.

Lemma 3. We have, for all 𝐻 ∈ N,

𝐻∑︁
ℎ=1

1

ℎ1/2
6 2𝐻1/2; (7)

𝐻−1∑︁
ℎ=1

ℎ1/2
(︂
1− ℎ

𝐻

)︂
6

4

15
𝐻3/2 +𝐻1/2; (8)

𝐻−1∑︁
ℎ=1

1

ℎ1/2

(︂
1− ℎ

𝐻

)︂
6

4

3
𝐻1/2; (9)

+∞∑︁
ℎ=1

| sin(2𝜋𝛿ℎ)|
ℎ3/2

6
5

2
(2𝜋𝛿)1/2 + (2𝜋𝛿)3/2, 𝛿 > 0. (10)

Proof: Note that the first three estimates are trivial for
𝐻 = 1. Hence in the sequel we suppose that 𝐻 > 2.

1) For (7), we have

𝐻∑︁
ℎ=1

1

ℎ1/2
6

𝐻∑︁
ℎ=1

∫︁ ℎ

ℎ−1

d𝑡

𝑡1/2
=

∫︁ 𝐻

0

d𝑡

𝑡1/2
= 2𝐻1/2.

2) For (8), we have

𝐻−1∑︁
ℎ=1

ℎ1/2 6
𝐻−1∑︁
ℎ=1

∫︁ ℎ+1

ℎ
𝑡1/2d𝑡 =

∫︁ 𝐻

1
𝑡1/2d𝑡 6

2

3
𝐻3/2.

Moreover

𝐻−1∑︁
ℎ=1

ℎ3/2

𝐻
= −𝐻1/2 +

𝐻∑︁
ℎ=1

ℎ3/2

𝐻

> −𝐻1/2 +
𝐻∑︁

ℎ=1

∫︁ ℎ

ℎ−1

𝑡3/2

𝐻
d𝑡

= −𝐻1/2 +
1

𝐻

∫︁ 𝐻

0
𝑡3/2d𝑡 = −𝐻1/2 +

2

5
𝐻3/2.

Using these inequalities, we now have

𝐻−1∑︁
ℎ=1

ℎ1/2 −
𝐻−1∑︁
ℎ=1

ℎ3/2

𝐻
6

2

3
𝐻3/2 − 2

5
𝐻3/2 +𝐻1/2

which gives the expected result.
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3) Similarly, for (9) we have

𝐻−1∑︁
ℎ=1

1

ℎ1/2

(︂
1− ℎ

𝐻

)︂
=

𝐻∑︁
ℎ=1

1

ℎ1/2

(︂
1− ℎ

𝐻

)︂

6
𝐻∑︁

ℎ=1

∫︁ ℎ

ℎ−1

1

𝑡1/2

(︂
1− 𝑡

𝐻

)︂
d𝑡

=

∫︁ 𝐻

0

1

𝑡1/2

(︂
1− 𝑡

𝐻

)︂
d𝑡 =

4

3
𝐻1/2.

4) We now estimate the last sum. We have∑︁
ℎ61/(2𝜋𝛿)

| sin(2𝜋𝛿ℎ)|
ℎ3/2

6 2𝜋𝛿
∑︁

ℎ61/(2𝜋𝛿)

1

ℎ1/2

6 4𝜋𝛿⌊1/(2𝜋𝛿)⌋1/2 6 2(2𝜋𝛿)1/2

where we have used (8).
For the remaining terms, we write

∑︁
ℎ>1+⌊1/(2𝜋𝛿)⌋

| sin(2𝜋𝛿ℎ)|
ℎ3/2

6
∑︁

ℎ>1+⌊1/(2𝜋𝛿)⌋

1

ℎ3/2

=
1

(1 + ⌊1/(2𝜋𝛿)⌋)3/2
+

∑︁
ℎ>2+⌊1/(2𝜋𝛿)⌋

1

ℎ3/2

6 (2𝜋𝛿)3/2 +
∑︁

ℎ>2+⌊1/(2𝜋𝛿)⌋

∫︁ ℎ

ℎ−1

d𝑡

𝑡3/2

6 (2𝜋𝛿)3/2 +

∫︁ +∞

1/(2𝜋𝛿)

d𝑡

𝑡3/2
6 (2𝜋𝛿)3/2 +

1

2
(2𝜋𝛿)1/2.

We now state an explicit version of van der Corput’s
inequality for exponential sums : this is Equation (6.14) of
[35, p. 128].

Theorem 2. Let 𝑀 ∈ N, 𝜆 ∈ R>0 and 𝐶 ∈ [1,+∞). Let
𝑓 ∈ 𝒞2

(︀
[1,𝑀 ],R

)︀
such that

𝜆 6 |𝑓 ′′(𝑥)| 6 𝐶𝜆 for all 𝑥 ∈ [1,𝑀 ].

Then ⃒⃒⃒⃒
⃒

𝑀∑︁
𝑚=1

e(𝑓(𝑚))

⃒⃒⃒⃒
⃒ 6 3𝐶𝑀𝜆1/2 + 6𝜆−1/2.

We should now explain why we focus on the case 𝑓 ∈ 𝒞2.
The main term in the upper bound of Theorem 2 is the term
𝑀𝜆1/2 which provides a saving 𝜆1/2 with respect to the
trivial bound 𝑀 (at least when 𝜆 is small). More generally,
van der Corput’s method asserts that for 𝑘 > 2, when 𝑓 ∈ 𝒞𝑘

on [1,𝑀 ] and |𝑓 (𝑘)| has the order of magnitude 𝜆𝑘 > 0 small,
the saving is 𝜆𝜃𝑘𝑘 with 𝜃𝑘 = 1/(2𝑘 − 2) (see Theorem 3 of
[31]). In the applications we have in mind, |𝑓 (𝑘)| has a size
close to 𝑀1−𝑘, which provides a saving 𝑀 (1−𝑘)𝜃𝑘 . It is now
plain that this saving is maximal for 𝑘 = 2.

Now we can prove the main result of this section: we
give an explicit bound which controls the difference between
ℛ(𝑓 ; 𝛿) and the expected main term 2𝑀𝛿. In Section 4,
we shall use it, jointly with Lemma 4, or Corollary 1 to
legitimate the heuristic probabilistic estimate approach from
Subsection 1.5: ℛ(𝑓 ; 𝛿) will count the number of bad cases
and the main term 2𝑀𝛿 will play the role of the probabilistic
estimate. Note that we may obtain simpler expressions for

the upper bounds in (11) and (12). However, this option has
been ruled out in order to keep the best estimate possible.
Corollary 1 actually gives more ready-to-use bounds.

Theorem 3. Let 𝑀 ∈ N ∖ {0}, 𝜆 ∈ R>0 and 𝐶 ∈ [1,+∞). Let
𝑓 ∈ 𝒞2

(︀
[1,𝑀 ],R

)︀
such that

𝜆 6 |𝑓 ′′(𝑥)| 6 𝐶𝜆 for all 𝑥 ∈ [1,𝑀 ].

Then for any 𝛿 > 0, one has

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 Δ1(𝑀,𝜆)

+

(︂
60

(2𝜋)1/2
+ 24(2𝜋)1/2𝛿

)︂(︂
𝛿

𝜆

)︂1/2

+ℛ(𝑓 + 𝛿; 0) (11)

and

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 Δ2(𝑀,𝜆)

+

(︂
60

(2𝜋)1/2
+ 24(2𝜋)1/2𝛿

)︂(︂
𝛿

𝜆

)︂1/2

(12)

where we have set

𝛼0 =
6

𝜋
+

4

5
, 𝛽0 =

3

𝜋
+

4

5
,

Δ1(𝑀,𝜆,𝐻) =
𝑀

𝐻
+ 2𝛼0𝐶𝑀𝜆1/2𝐻1/2

+ 6𝐶𝑀
𝜆1/2

𝐻1/2
+ 16

𝜆−1/2

𝐻1/2
,

Δ2(𝑀,𝜆,𝐻) =
2𝑀

𝐻
+ 4𝛽0𝐶𝑀𝜆1/2𝐻1/2

+ 12𝐶𝑀
𝜆1/2

𝐻1/2
+ 32

𝜆−1/2

𝐻1/2
,

Δ1(𝑀,𝜆) = min
𝐻∈N

Δ1(𝑀,𝜆,𝐻),

Δ2(𝑀,𝜆) = min
𝐻∈N

Δ2(𝑀,𝜆,𝐻).

Proof: Using Lemma 2, we have, for any 𝐻 ∈ N

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 𝐸1(𝐻) + 𝐸2(𝐻) +ℛ(𝑓 + 𝛿; 0)

and
|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 𝐸1(𝐻) + 2𝐸2(𝐻),

where 𝐸1(𝐻) and 𝐸2(𝐻) are defined by (5) and (6) respec-
tively.

Our aim is now to bound each of the terms 𝐸𝑗 using
Theorem 2 for the inner sums, and Lemma 3 for the sums
involved.

For 𝐸1, Theorem 2 yields

𝐸1(𝐻) 6 2
𝐻∑︁

ℎ=1

| sin(2𝜋𝛿ℎ)|
𝜋ℎ

(︁
3𝐶𝑀𝜆1/2ℎ1/2 + 6𝜆−1/2ℎ−1/2

)︁
,

and we have

2
𝐻∑︁

ℎ=1

| sin(2𝜋𝛿ℎ)|
𝜋ℎ1/2

6
2

𝜋

𝐻∑︁
ℎ=1

1

ℎ1/2
6

4

𝜋
𝐻1/2,

𝐻∑︁
ℎ=1

| sin(2𝜋𝛿ℎ)|
𝜋ℎ3/2

6

(︂
5

(2𝜋)1/2
+ 2(2𝜋)1/2𝛿

)︂
𝛿1/2
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by using (7) and (10) respectively. This gives

𝐸1(𝐻) 6𝐹1(𝐻) +

(︂
60

(2𝜋)1/2
+ 24(2𝜋)1/2𝛿

)︂(︂
𝛿

𝜆

)︂1/2

where we have set

𝐹1(𝐻) =
12

𝜋
𝐶𝑀𝜆1/2𝐻1/2.

Similarly, for 𝐸2(𝐻), Theorem 2 gives

𝐸2(𝐻) 6
𝑀

𝐻

+
2

𝐻

𝐻−1∑︁
ℎ=1

(︂
1− |ℎ|

𝐻

)︂(︁
3𝐶𝑀(ℎ𝜆)1/2 + 6(ℎ𝜆)−1/2

)︁
,

and using (8) and (9) we have

𝐸2(𝐻) 6 𝐹2(𝐻)

where we have set

𝐹2(𝐻) =
𝑀

𝐻
+

8𝐶

5
𝑀𝜆1/2𝐻1/2 + 6𝐶𝑀

𝜆1/2

𝐻1/2
+ 16

𝜆−1/2

𝐻1/2
.

Gathering the contribution of each 𝐸𝑗(𝐻), we have the
bounds

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6𝐹1(𝐻) + 𝐹2(𝐻) +ℛ(𝑓 + 𝛿; 0)

+

(︂
60

(2𝜋)1/2
+ 24(2𝜋)1/2𝛿

)︂(︂
𝛿

𝜆

)︂1/2

and

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6𝐹1(𝐻) + 2𝐹2(𝐻)

+

(︂
60

(2𝜋)1/2
+ 24(2𝜋)1/2𝛿

)︂(︂
𝛿

𝜆

)︂1/2

valid for any 𝐻 ∈ N. The expected result follows from taking
the minimum in 𝐻 in both inequalities.

The form of the statement of Theorem 3 allows us to
choose, for a given function, a value of 𝐻 that yields small
values (and if possible, the smallest ones) of the upper
bounds. But, it can prove convenient to give our reader some
closed and ready-to-use expressions for the upper bounds for
the error |ℛ(𝑓 ; 𝛿)− 2𝑀𝛿|. This is the purpose of Lemma 4
and Corollary 1.

Lemma 4. Let 𝑀 ∈ N ∖ {0}, 𝜆 ∈ R>0 and 𝐶 ∈ [1,+∞). Then
with the notation of Theorem 3, we have

Δ1(𝑀,𝜆) 6 𝛼
2/3
0 𝐶2/3𝑀𝜆1/3

+ 2𝛼
2/3
0 𝐶2/3 max(𝑀𝜆1/3,𝑀1/2)

+ 16𝛼
1/3
0 𝐶1/3𝑀1/2 + (6 + 2𝛼0)𝛼

1/3
0 𝐶4/3𝑀𝜆2/3

and

Δ2(𝑀,𝜆) 6 2𝛽
2/3
0 𝐶2/3𝑀𝜆1/3+

4𝛽
2/3
0 𝐶2/3 max(𝑀𝜆1/3,𝑀1/2)

+ 32𝛽
1/3
0 𝐶1/3𝑀1/2 + (12 + 4𝛽0)𝛽

1/3
0 𝐶4/3𝑀𝜆2/3.

Proof: We treat the cases 𝑀𝜆2/3 > 1 and 𝑀𝜆2/3 < 1
separately. In order to bound some of the terms below, we
shall use the following inequality√︁

1 + ⌊𝑡⌋ 6
√
𝑡+

1√
𝑡

(𝑡 > 0). (13)

With the definition of 𝛼0, we recall that Theorem 3 gives

Δ1(𝑀,𝜆) 6
𝑀

𝐻
+2𝛼0𝐶𝑀𝜆1/2𝐻1/2+6𝐶

𝑀𝜆1/2

𝐻1/2
+16

𝜆−1/2

𝐻1/2

for any 𝐻 ∈ N.

If 𝑀𝜆2/3 > 1, we set 𝑥 := (𝛼0𝐶)
−2/3𝜆−1/3 and we

choose 𝐻 := 1 + ⌊𝑥⌋. In particular, 𝐻 > 𝑥, and (13) implies
𝐻1/2 6 𝑥1/2 + 𝑥−1/2 , so that

Δ1(𝑀,𝜆) 6
𝑀

𝑥
+ 2𝛼0𝐶𝑀𝜆1/2𝑥1/2

+ (6 + 2𝛼0)𝐶
𝑀𝜆1/2

𝑥1/2
+ 16

𝜆−1/2

𝑥1/2

6 3𝛼
2/3
0 𝐶2/3𝑀𝜆1/3 + (6 + 2𝛼0)𝛼

1/3
0 𝐶4/3𝑀𝜆2/3

+ 16𝛼
1/3
0 𝐶1/3𝜆−1/3

which implies the expected result since

3𝛼
2/3
0 𝐶2/3𝑀𝜆1/3 6 𝛼

2/3
0 𝐶2/3𝑀𝜆1/3

+ 2𝛼
2/3
0 𝐶2/3 max(𝑀𝜆1/3,𝑀1/2)

and
16𝛼

1/3
0 𝐶1/3𝜆−1/3 6 16𝛼

1/3
0 𝐶1/3𝑀1/2.

If 𝑀𝜆2/3 6 1, we set 𝑥 := (𝛼0𝐶)
−2/3(𝑀𝜆)−1 and we

choose 𝐻 := 1 + ⌊𝑥⌋. In particular, 𝐻 > 𝑥, and (13) implies
𝐻1/2 6 𝑥1/2 + 𝑥−1/2 , so that

Δ1(𝑀,𝜆) 6
𝑀

𝑥
+ 2𝛼0𝐶𝑀𝜆1/2𝑥1/2

+ (6 + 2𝛼0)𝐶
𝑀𝜆1/2

𝑥1/2
+ 16

𝜆−1/2

𝑥1/2

6 𝛼
2/3
0 𝐶2/3𝑀2𝜆+ 2𝛼

2/3
0 𝐶2/3𝑀1/2

+ (6 + 2𝛼0)𝛼
1/3
0 𝐶4/3𝑀3/2𝜆+ 16𝛼

1/3
0 𝐶1/3𝑀1/2,

which implies the expected result since

𝛼
2/3
0 𝐶2/3𝑀2𝜆 6 𝛼

2/3
0 𝐶2/3𝑀𝜆1/3,

2𝛼
2/3
0 𝐶2/3𝑀1/2 6 2𝛼

2/3
0 𝐶2/3 max(𝑀𝜆1/3,𝑀1/2)

and

(6 + 2𝛼0)𝛼
1/3
0 𝐶4/3𝑀3/2𝜆 6 (6 + 2𝛼0)𝛼

1/3
0 𝐶4/3𝑀𝜆2/3.

For the estimates for Δ2(𝑀,𝜆), we notice that Theorem
3 gives

Δ2(𝑀,𝜆)

2
6
𝑀

𝐻
+2𝛽0𝐶𝑀𝜆1/2𝐻1/2+6𝐶

𝑀𝜆1/2

𝐻1/2
+16

𝜆−1/2

𝐻1/2

for any 𝐻 ∈ N. Reproducing the previous computations with
𝛽0 instead of 𝛼0 gives the expected result.

This completes the proof.
Combining Theorem 3 and Lemma 4, we obtain the

following:
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Corollary 1. We have, under the assumptions of Theorem 3, the
two estimates

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 𝛼
2/3
0 𝐶2/3𝑀𝜆1/3

+ 2𝛼
2/3
0 𝐶2/3 max(𝑀𝜆1/3,𝑀1/2)

+ 16𝛼
2/3
0 𝐶2/3𝑀1/2 + (6 + 2𝛼0)𝛼

1/3
0 𝐶4/3𝑀𝜆2/3

+

(︂
60

(2𝜋)1/2
+ 24(2𝜋)1/2𝛿

)︂(︂
𝛿

𝜆

)︂1/2

+ℛ(𝑓 + 𝛿; 0) (14)

and

|ℛ(𝑓 ; 𝛿)− 2𝑀𝛿| 6 2𝛽
2/3
0 𝐶2/3𝑀𝜆1/3

+ 4𝛽
2/3
0 𝐶2/3 max(𝑀𝜆1/3,𝑀1/2)

+ 32𝛽
2/3
0 𝐶2/3𝑀1/2 + (12 + 4𝛽0)𝛽

1/3
0 𝐶4/3𝑀𝜆2/3

+

(︂
60

(2𝜋)1/2
+ 24(2𝜋)1/2𝛿

)︂(︂
𝛿

𝜆

)︂1/2

(15)

for any 𝛿 > 0.

As a final remark, let us point that the term (𝛿/𝜆)1/2,
which may look somewhat singular in our bounds, has a
very natural interpretation. Indeed, if 𝑓 is a polynomial of
the form 𝑓(𝑥) = 𝑎 + 𝑢

𝑣𝑥 + 𝜆
2𝑥

2, with 𝑎, 𝑢, 𝑣 ∈ Z, 𝑣 small,
then for any 𝑥 ∈ (−(2𝛿/𝜆)1/2, (2𝛿/𝜆)1/2) divisible by 𝑣, we
shall have ‖𝑓(𝑥)‖ < 𝛿, which gives > 2

𝑣

(︀
2𝛿
𝜆

)︀1/2
bad cases in

this interval.
More generally, the same would hold for a function with

𝑓(0) ∈ Z, 𝑓 ′(0) = 𝑢/𝑣, and with derivatives of order > 3
vanishing quickly enough so that 𝑓 is well approximated by
a polynomial of degree 2 over (−(2𝛿/𝜆)1/2, (2𝛿/𝜆)1/2). In
terms of bad cases, this is, e.g., the well-known situation of
the cosine function close to 0, or of the cube root close to 1.

4 AN ESTIMATE OF THE NUMBER OF “BAD CASES”
FOR THE FIRST QUICK STEP OF THE TWO STEP ZIV
STRATEGY

Let 𝑝 > 1, 𝑒1, 𝑒2 ∈ Z, 𝑎, 𝑏 ∈ 𝒟𝑝 two floating-point numbers
such that [𝑎, 𝑏] ⊂ [2𝑒1 , 2𝑒1+1), 𝛿 > 0 and 𝜙 : [𝑎, 𝑏] → R
be a 𝒞ℓ function, ℓ > 2, such that 𝜙([𝑎, 𝑏]) ⊂ [2𝑒2 , 2𝑒2+1)8.
Let 𝐴 = 𝑎2𝑝−1−𝑒1 and 𝐵 = 𝑏2𝑝−1−𝑒1 ∈ N, and finally
𝑀 = 𝐵 − 𝐴 + 1. In order to tackle Problems 1 and 2 of
Section 2, we introduce ℐ(𝜙; 𝑝,𝐴,𝐵, 𝛿) :=

∙ #

{︂
𝐴 6 𝑗 6 𝐵,

⃦⃦⃦⃦
2𝑝−1−𝑒2𝜙

(︂
𝑗

2𝑝−1−𝑒1

)︂
− 1

2

⃦⃦⃦⃦
< 𝛿

}︂
(16)

in rounding to nearest mode,

∙ #

{︂
𝐴 6 𝑗 6 𝐵,

⃦⃦⃦⃦
2𝑝−1−𝑒2𝜙

(︂
𝑗

2𝑝−1−𝑒1

)︂⃦⃦⃦⃦
< 𝛿

}︂
(17)

in directed rounding modes.

We call (𝐴,𝐵, 𝛿)-bad cases (or simply bad cases when there
is no ambiguity) the elements of these sets.

Our goal is to obtain fully effective estimates of
the form ℐ(𝜙; 𝑝,𝐴,𝐵, 𝛿) = 2𝑀𝛿 + 𝑜(𝑀𝛿), or, at least,

8. As already said at the beginning of Section 2, considering this
case is sufficient to address the general case [𝑎, 𝑏] ⊂ ±[2𝑒1 , 2𝑒1+1) and
𝜙([𝑎, 𝑏]) ⊂ ±[2𝑒2 , 2𝑒2+1).

ℐ(𝜙; 𝑝,𝐴,𝐵, 𝛿) = 2𝑀𝛿 +𝑂(𝑀𝛿). Though less accurate, the
latter may still yield a fairly good upper bound for the
number of bad cases. Recall that if 𝛿 = 2−𝑘, 𝑘 ∈ N, 2𝑀𝛿 is
the number of bad cases suggested by the heuristic approach
of Subsection 1.5, so that ℐ(𝜙; 𝑝,𝐴,𝐵, 2−𝑘) is exactly the
number of bad cases for the first quick step of the two
step Ziv strategy using intermediate accuracy 21−𝑝−𝑘. In
the sequel, we shall thus use 𝛿 = 2−𝑘 for some 𝑘 ∈ N (the
number of extra bits in the first step of Ziv strategy).

Remark 2. In the context of a two step Ziv strategy, a good
estimate on ℐ(𝜙; 𝑝,𝐴,𝐵, 𝛿) allows one to give an average analysis
of the cost of an evaluation of 𝜙(𝑥) for 𝑥 ∈ [𝑎, 𝑏].

Indeed, if the first step uses relative accuracy 21−𝑝−𝑘, the
second using relative accuracy 21−𝑝−𝑘′

(with 𝑘′ large enough so
as to capture worst cases), the average cost of one evaluation of
the function is 𝑐𝜙,𝑝(𝑘) + 𝑐𝜙,𝑝(𝑘

′)ℐ(𝜙; 𝑝,𝐴,𝐵, 2−𝑘)/𝑀 , where
𝑐𝜙,𝑝(𝑗) stands for the cost of one evaluation of 𝑓 with relative
accuracy 21−𝑝−𝑗 . For choices of parameters for which our estimates
yield ℐ(𝜙; 𝑝,𝐴,𝐵, 2−𝑘) ≈ 21−𝑘𝑀 , we obtain an average cost ≈
𝑐𝜙,𝑝(𝑘)+21−𝑘𝑐𝜙,𝑝(𝑘

′) (the ≈ meaning here that we can determine
a rigorous, small interval centered at 𝑐𝜙,𝑝(𝑘) + 21−𝑘𝑐𝜙,𝑝(𝑘

′)
containing the average cost).

In order to connect these questions and the results
obtained on (1),

∙ In rounding to nearest mode, we introduce the
function

𝑓(𝑥) := 2𝑝−1−𝑒2𝜙

(︂
𝐴− 1 + 𝑥

2𝑝−1−𝑒1

)︂
−1

2
, 1 6 𝑥 6𝑀,

(18)
and observe that ℛ(𝑓 ; 𝛿) = ℐ(𝜙; 𝑝,𝐴,𝐵, 𝛿).

∙ Similarly, in directed rounding modes, we introduce
the function

𝑓(𝑥) := 2𝑝−1−𝑒2𝜙

(︂
𝐴− 1 + 𝑥

2𝑝−1−𝑒1

)︂
, 1 6 𝑥 6𝑀,

(19)
and observe again that ℛ(𝑓 ; 𝛿) = ℐ(𝜙; 𝑝,𝐴,𝐵, 𝛿).

We are thus in a position to apply Theorem 3 to derive
rigorous and useful estimates for ℐ(𝜙; 𝑝,𝐴,𝐵, 𝛿). Note that,
whatever the rounding mode we choose, only the values of
the second derivative of 𝑓 matter in Theorem 3, hence the
estimates that we obtain will be the same.

We now give the precise values of the constants involved
in the statement of Theorem 3, namely 𝐶 and 𝜆.

𝜆 = min
𝑥∈[1,𝑀 ]

|𝑓 ′′(𝑥)|

=2−𝑝+1+2𝑒1−𝑒2 min
𝑥∈[𝑎,𝑏]

|𝜙′′(𝑥)| .

Recall that 𝜆 has to be positive. Now,

𝐶𝜆 = max
𝑥∈[1,𝑀 ]

|𝑓 ′′(𝑥)|

=2−𝑝+1+2𝑒1−𝑒2 max
𝑥∈[𝑎,𝑏]

|𝜙′′(𝑥)| ,

hence

𝐶 =
max𝑥∈[1,𝑀 ] |𝑓 ′′(𝑥)|
min𝑥∈[1,𝑀 ] |𝑓 ′′(𝑥)|

=
max𝑥∈[𝑎,𝑏] |𝜙′′(𝑥)|
min𝑥∈[𝑎,𝑏] |𝜙′′(𝑥)|

.

Note that this formula is legitimate since we assumed
min𝑥∈[𝑎,𝑏] |𝜙′′(𝑥)| = 2𝑝−1−2𝑒1+𝑒2𝜆 > 0.
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Remark 3. In order to have 𝜆 > 0, one might have to split
the interval into sub-intervals over which 𝜙′′ has no zero. More
generally, if 𝜙′′ has huge variations, one might consider splitting
the interval to avoid too large a value of 𝐶 .

Before applying Theorem 3 in order to estimate the
number of bad cases of the first quick step, we now wish
to understand the constraints on the parameters 𝑀,𝑘, 𝜆, 𝐶,
and in particular, the number of bits 𝑘 for which we can
derive a relevant result from Theorem 3. Therefore, we check
the various constraints that the parameters must satisfy in
order to make inequality (15) (from Corollary 1) relevant.
This inequality is a consequence of Theorem 3 but, in our
practical experiments in binary64 and binary128, the results
it yields are very close to the one provided by Theorem (3).

4.1 Analysis of the results established in Section 3:
constraints on the parameters
The main term 2𝑀𝛿 should not be smaller than any of the
terms of the right-hand side of (15). So let us check the
following conditions:

∙ we have 2𝑀𝛿 6 4𝛽
2/3
0 𝐶2/3𝑀𝜆1/3 if and only if

log2(1/𝜆)

3
− 2 log2(𝛽0𝐶)

3
− 1 6 log2(1/𝛿)

i.e.

𝑝− 2𝑒1 + 𝑒2 − log2

(︂
min

𝑥∈[𝑎,𝑏]
|𝜙′′(𝑥)|

)︂
− 2 log2(𝛽0𝐶)− 4 6 3𝑘.

∙ We have 2𝑀𝛿 6 32𝛽
2/3
0 𝐶2/3𝑀1/2 if and only if

log2(𝑀)

2
6 𝑘 + 4 +

2 log2(𝛽0𝐶)

3
.

∙ We have 2𝑀𝛿 6 (12 + 4𝛽0)𝛽
1/3
0 𝐶4/3𝑀𝜆2/3 if and

only if

2 log2(1/𝜆)

3
− log2(3 + 𝛽0)−

log2(𝛽0)

3

− 4 log2(𝐶)

3
− 1 6 log2(1/𝛿)

i.e.

2(𝑝−2𝑒1+𝑒2)−2 log2

(︂
min

𝑥∈[𝑎,𝑏]
|𝜙′′(𝑥)|

)︂
−3 log2(3+𝛽0)

− log2(𝛽0)− 4 log2(𝐶)− 5 6 3𝑘.

∙ Now, we check the condition

2𝑀𝛿 6

(︂
60

(2𝜋)1/2
+ 24(2𝜋)1/2𝛿

)︂(︂
𝛿

𝜆

)︂1/2

.

Note that, as soon as 𝑘 > 2, 60/(2𝜋)1/2 > 24(2𝜋)1/2𝛿.
Therefore, we focus on the condition 2𝑀𝛿 6

(60/(2𝜋)1/2)
(︀
𝛿
𝜆

)︀1/2
, which is equivalent to

2 log2(𝑀)− log2(1/𝜆)−1−2 log2(15)+ log2(𝜋) 6 𝑘

i.e.

2 log2(𝑀)− 𝑝+ 2𝑒1 − 𝑒2 + log2

(︂
min

𝑥∈[𝑎,𝑏]
|𝜙′′(𝑥)|

)︂
− 2 log2(15) + log2(𝜋) 6 𝑘.

Remark 4. It is probably worth commenting a little bit informally
on the error term. Typically, for values of 𝑥 such that 𝑥 and
𝑓(𝑥) have exponent close to 0, in our context, 𝜆 is going to be
of the order of 2−𝑝; assuming for the sake of simplicity that all
constants including 𝐶 are 1, the upper bound is of the order of
𝑀2−𝑝/3 + 𝑀1/2 + 2(𝑝−𝑘)/2 (recall that 𝑀 is the number of
floating-point numbers in the interval under consideration, so
that the trivial upper bound would be 𝑀 ). As we can restrict to
𝑘 6 𝑝/3, the middle term is always absorbed by one of the other
two. The error term is thus either roughly 𝑀2−𝑝/3 for 𝑀 > 22𝑝/3

(“large intervals”) or 2(𝑝−𝑘)/2 for 𝑀 < 22𝑝/3 (“small intervals”).

Now, we illustrate our results on two examples: the cube
root and the exponential functions. In both cases, we will
first have to decompose the input binade in order for the
output values to fit in one single binade, then find explicit
expressions for 𝐶 and 𝜆 before being able to conduct actual
experiments.

4.2 The 3
√
· function

In this case, we have 𝜙(𝑥) = 𝑥1/3. This function never
overflows nor underflows in its exponent range. Note that
it takes many exact values: for instance, if 𝑥 ∈ 𝒟⌊𝑝/3⌋,
𝑦 = 𝑥3 ∈ 𝒟𝑝 has 𝑥 as an exact cube root in 𝒟𝑝.

4.2.1 Explicit values of the parameters
Let us apply our method on an interval [𝑎, 𝑏] enclosed in a
single binade of exponent 𝑒1. Note that we can assume 𝑎, 𝑏 >
0 as the cube root function is odd; further, as 3

√
23 · 𝑥 = 2 3

√
𝑥,

we can restrict our study to any 3 consecutive binades, for
instance [1/2, 1), [1, 2), [2, 4).

We have

𝜙([𝑎, 𝑏]) ∩ 𝒟𝑝 =[𝑎1/3, 𝑏1/3] ∩ 𝒟𝑝

⊂[2𝑒1/3, 2(𝑒1+1)/3) ∩ 𝒟𝑝

⊂[2⌊𝑒1/3⌋, 2⌊𝑒1/3⌋+1).

As such, we have 𝑒2 = ⌊𝑒1/3⌋. Therefore, and as 𝑎, 𝑏 > 0,
we have

𝜆 =
2−𝑝+2+2𝑒1−⌊𝑒1/3⌋

9𝑏5/3
,

𝐶 =
max𝑥∈[𝑎,𝑏] |𝜙′′(𝑥)|
min𝑥∈[𝑎,𝑏] |𝜙′′(𝑥)|

= (𝑏/𝑎)5/3.

Overall, we can always treat a full input binade at a time,
so that 𝑀 = 2𝑝−1.

4.2.2 A simplified statement
We can now collect our results to illustrate the use of
Lemma 4 to obtain a simple bound on the number of bad
cases, depending only on the natural parameters 𝑝, 𝛿 of the
problem. We actually give two bounds; the second one is
more compact but loses a small constant factor as 𝑝 grows
large.

Corollary 2. For the cube root function over the binade [1/2, 1), if
𝑝 > 11 the number of bad cases is in the interval [𝛿2𝑝−𝜌, 𝛿2𝑝+𝜌],
where

𝜌 6 5.72 · 22𝑝/3 + 40.2 · 2𝑝/2 + 19.7 · 2𝑝/3 + 110 · 𝛿1/22𝑝/2.

If, further, 𝑝 > 24, we have 𝜌 6 8.31 ·22𝑝/3+110 · 𝛿1/22𝑝/2.
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Proof: Follows from the second part of Lemma 4 by
specializing the values of 𝐶, 𝜆 as seen before. Note that
we have 𝜆 = 21−𝑝/9(1 − 2−𝑝)5/3, which is > 21−𝑝/9 and
6 1.001 · 21−𝑝/9 for 𝑝 > 11.

The second claim simply uses 2𝑝/2 6 22𝑝/32−4 and
2𝑝/3 6 22𝑝/32−8 for 𝑝 > 24.

4.2.3 Experimental results
We shall treat the binary64 (Table 1) and binary128 (Table 2)
cases. We chose not to deal with the binary32 case as it is
so easy, in that case, to compute bad cases exactly that our
work seemed irrelevant. On the other hand, for binary64 and
binary128, it is not realistic to do the computation of the exact
values for a whole binade; we thus compare our bounds with
the expected value under the heuristic probabilistic model.
We shall also limit ourselves to the binade [1/2, 1), the results
for the other two binades being slightly different, but very
similar.

Our experiments are based on Theorem 3, but we checked
that Lemma 4 gives the exact same tables (given the number
of decimal figures displayed in the tables) in that setting.

The second column (expected) gives the expected number
of bad cases under the probabilistic heuristic of Subsec-
tion 1.5, that is to say 2𝑀𝛿 =𝑀2−𝑘+1.

The last column deserves further explanation: rather
than giving the exact lower and upper bound, we prefer
giving their “relative quality”, which means the bound for
|ℛ(𝑓 ; 𝛿)/2𝑀𝛿 − 1|. Thus, a bound close to 0% means that
our bounds give a very precise order of magnitude, while a
bound larger than 100% is not so good – though, while the
corresponding lower bound is meaningless, the upper bound
usually remains non trivial, even often useful as it still gives
the correct order of magnitude. For instance, Table 1 tells us
that, in binary64, if 𝑘 = 14, the number of bad cases for 3

√
·

over [1/2, 1) lies between (1− 0.46) · 242 and (1+ 0.46) · 242,
which leads to a probability between (1 − 0.46) · 2−10 and
(1 + 0.46) · 2−10 for the occurrence of the second accurate
step.

𝑘 expected rel. radius
5 281474976710656 0.1%
6 140737488355328 0.18%
7 70368744177664 0.36%
8 35184372088832 0.72%
9 17592186044416 1.5%
10 8796093022208 2.9%
11 4398046511104 5.8%
12 2199023255552 11.5%
13 1099511627776 23%
14 549755813888 46%
15 274877906944 92%

TABLE 1
Our bounds for the cube root function in the binary64 case, 𝑥 ∈ [1/2, 1)

4.3 The exp function
In this case, we have 𝜙(𝑥) = exp(𝑥). Note that in this section,
we shall treat the exponential function both for positive and
negative values of 𝑥. Equivalently, this can be seen as treating
the two functions exp and 𝑥 ↦→ exp(−𝑥) for positive argu-
ments, which is consistent with the formalization adopted in
Section 2.

𝑘 expected rel. radius
8 4.0564819e31 6.8e-7 %
11 5.0706024e30 5.4 e-6 %
14 6.3382530e29 4.3 e-5%
17 7.9228162e28 3.5 e-4%
20 9.9035203e27 2.8 e-3%
23 1.2379400e27 0.022%
26 1.5474250e26 0.18%
29 1.9342813e25 1.5%
32 2.4178516e24 11.2%
35 3.0223145e23 90%

TABLE 2
Our bounds for the cube root function in the binary128 case, 𝑥 ∈ [1/2, 1)

The exp function overflows for large, positive 𝑥 and
underflows for large, negative 𝑥; on the other hand, the
only rational value of exp(𝑥), with 𝑥 a rational number, is
exp(0) = 1, so that for the rational 𝛿 we use we shall ignore
the term ℛ(𝑓 + 𝛿; 0) in (3), (11) and (14). We shall use that
repeatedly in this section, together with the fact that log 2 is
irrational so that 𝑥/ log 2 and 𝑥 log 2 can never be an integer
when 𝑥 is a nonzero rational number.

4.3.1 Explicit values of the parameters

Let [𝑎, 𝑏] be an interval such that ±[𝑎, 𝑏] ⊂ [2𝑒1 , 2𝑒1+1) and
exp([𝑎, 𝑏]) ⊂ [2𝑒2 , 2𝑒2+1). First observe that obviously,

𝜆 = 2−𝑝+1+2𝑒1−𝑒2 exp(𝑎),

𝐶 = exp(𝑏− 𝑎).

We now discuss 𝑒1, 𝑒2. For exp([𝑎, 𝑏]) to be enclosed
in a single binade of exponent 𝑒2, we need to have
2𝑒2 6 exp(𝑎) 6 exp(𝑏) < 2𝑒2+1, hence [𝑎, 𝑏] ⊂ [𝑒2 log 2, (𝑒2+
1) log 2). For positive real numbers with 𝑒1 6 −2, we have
[2𝑒1 , 2𝑒1+1) ⊂ [0, log 2), hence we may deal with a whole
binade at once and have 𝑒2 = 0. The same is true for negative
real numbers with 𝑒1 6 −2, where we can take 𝑒2 = −1. In
both cases, we can take 𝑀 = 2𝑝−1.

For real numbers with 𝑒1 > −1, however, we have to
split a given input binade into parts:

[2𝑒1 , 2𝑒1+1) = [2𝑒1 , ⌈2𝑒1/log 2⌉ log 2)
∪

⋃︁
⌈ 2𝑒1

log 2⌉6ℓ<
⌊︁

2𝑒1+1

log 2

⌋︁[ℓ log 2, (ℓ+ 1) log 2)

∪
[︀⌊︀
2𝑒1+1/log 2

⌋︀
log 2, 2𝑒1+1

)︀
=:𝐼0(𝑒1) ∪

⋃︁
ℓ

𝐼ℓ(𝑒1) ∪ 𝐼∞(𝑒1).

Over 𝐼0(𝑒1), we have 𝑒2 = ⌊2𝑒1/log 2⌋, over 𝐼∞(𝑒1) we
have 𝑒2 =

⌊︀
2𝑒1+1/log 2

⌋︀
while over 𝐼ℓ(𝑒1) the corresponding

exponent is ℓ. In this case, we are thus limited to values of
𝑀 of the order of 2𝑝−1−𝑒1 log 2, or even smaller for 𝐼0 and
𝐼∞ if 2𝑒1 is close to a multiple of log 2.

A symmetric discussion holds similarly for negative
𝑥, where 𝐼0 = [−⌈2𝑒1/ log 2⌉ log 2,−2𝑒1 ] gives 𝑒2 =
−⌈2𝑒1/ log 2⌉, 𝐼ℓ = [−(ℓ + 1) log 2,−ℓ log 2) gives 𝑒2 =
−1 − ℓ, 𝐼∞ = (−2𝑒1+1,−

⌊︀
2𝑒1+1/ log 2

⌋︀
log 2) gives 𝑒2 =

−
⌈︀
2𝑒1+1/ log 2

⌉︀
.

We sum up the previous discussion concerning 𝑒1 and 𝑒2
in the following table.
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sign(𝑥) 𝑒1 𝐼 𝑒2
6 −2 −1

< 0 𝐼0 −⌈2𝑒1/log 2⌉
> −1 𝐼ℓ −1− ℓ

𝐼∞ −⌈2𝑒1+1/log 2⌉
6 −2 0

> 0 𝐼0 ⌊2𝑒1/log 2⌋
> −1 𝐼ℓ ℓ

𝐼∞ ⌊2𝑒1+1/log 2⌋

4.3.2 A simplified statement
Again, we illustrate Lemma 4 to get a global bound over the
binade [1, 2) of a compact form.

Corollary 3. For the exponential function over the binade [1, 2), if
𝑝 > 11 the number of bad cases is in the interval [𝛿2𝑝−𝜌, 𝛿2𝑝+𝜌],
where

𝜌 6 5.45 · 22𝑝/3 + 37.2 · 2𝑝/2 + 27.7 · 2𝑝/3 + 68.2 · 𝛿1/22𝑝/2.

If, further, 𝑝 > 24, we have 𝜌 6 7.89 ·22𝑝/3+68.2 ·𝛿1/22𝑝/2.

Proof: We split [1, 2) as [1, 2 log 2) ∪ [2 log 2, 2).
Over [1, 2 log 2), we have 𝑎 = 1 and 𝑏 6 2 log 2, 𝑒1 = 0,

𝑒2 = 1; this gives 𝜆 = 2−𝑝𝑒, 𝐶 6 4/𝑒, 𝑀 6 2𝑝(log 2− 1/2)+
1 6 0.194 · 2𝑝 for 𝑝 > 11. The first part of Lemma 4 then
yields

𝜌1 6 2.05 · 22𝑝/3 + 11.2 · 2𝑝/2 + 10.1 · 2𝑝/3 + 31.5 · 𝛿1/22𝑝/2.

Over [2 log 2, 2) we have 𝑎 ∈ [2 log 2, 2 log 2 + 21−𝑝] and
𝑏 = 2 − 21−𝑝, 𝑒1 = 0, 𝑒2 = 2; this gives 𝜆 ∈ [2−𝑝+1, 1.001 ·
2−𝑝+1], 𝐶 6 𝑒2/4, 𝑀 6 2𝑝(1− log 2), and then

𝜌2 6 3.4 · 22𝑝/3 + 26 · 2𝑝/2 + 17.6 · 2𝑝/3 + 36.7 · 𝛿1/22𝑝/2.

Adding the two estimates yields the claimed result.

4.3.3 Experimental results
We now include similar tables as in Subsection 4.2. Those
tables are obtained by using the decomposition above, and
applying Theorem 3 for each of those intervals – mimicking
the strategy of Corollary 3 (except that the slightly sharper
Theorem 3 is used instead of the ready-to-use Lemma 4).

In order to demonstrate our bounds in various settings,
we treat three different binades with a rather different be-
haviour: [1, 2), [32, 64) and [1/64, 1/32) in order to illustrate
the behaviour of our bounds for large/small operands of
the exponential function. We do not illustrate our bounds
for large, negative 𝑥 as in that case we get large negative 𝑒2,
which yield a value of 𝜆 > 1 and thus a bound >𝑀 , hence
empty.

Before going into this direction, we first mention that we
stress-tested our bounds with the binade [2−26, 2−25) where,
depending on 𝑘 and the rounding mode, either none or all
the floating-point numbers give rise to a hard-to-round case;
as expected in this setting, our bounds give the trivial result
that the number of bad cases is in [0, 2𝑝−1].

Our results are collected in Table 3 and Table 4. We obtain,
for instance, in binary128, for 𝑘 = 29, that the number of
bad cases for exp over [1, 2) lies between (1 − 0.014) · 284
and (1 + 0.014) · 284, which leads to a probability between
(1 − 0.014) · 2−28 and (1 + 0.014) · 2−28 for the occurrence
of the second accurate step.

𝑘 expected rel. rad. rel. rad. rel. rad.
[1, 2) [32, 64) [1/64, 1/32)

5 281474976710656 0.09% 1% 0.02%
6 140737488355328 0.17% 1.9% 0.02%
7 70368744177664 0.34% 3.7% 0.03%
8 35184372088832 0.67% 7.3% 0.05%
9 17592186044416 1.3% 15% 0.09%
10 48796093022208 2.7% 29% 0.2%
11 4398046511104 5.4% 58% 0.3%
12 2199023255552 11% 116% 0.6%
13 1099511627776 22% 231% 1.1%
14 549755813888 43% 462% 2.0%
15 274877906944 86% 924% 3.9%

TABLE 3
Our bounds for the exponential function in the binary64 case

𝑘 expected rel. rad. rel. rad. rel. rad.
[1, 2) [32, 64) [1/64, 1/32)

8 4.0564819e31 6.4e-7% 6.9e-6 % 2.8e-8
11 5.0706024e30 5.1e-6% 5.6e-5% 2.2e-7
14 6.3382530e29 4.1e-5% 4.5e-4% 1.8e-6
17 7.9228162e28 3.3e-4% 3.6e-3% 1.5e-5
20 9.9035203e27 2.7e-3% 2.9e-2% 1.2e-4
23 1.2379400e27 2.1e-2% 2.3e-1% 9.0e-4
26 1.5474250e26 1.7e-1% 1.9% 7.2e-3
29 1.9342813e25 1.4% 15% 5.8e-2
32 2.4178516e24 11% 116% 0.46%
35 3.0223145e23 86% 924% 3.7%

TABLE 4
Our bounds for the exponential function in the binary128 case

We conclude this discussion by a binade which is of
a particular interest for the CRlibm library, as the latter
starts by performing an argument reduction to restrict to the
interval [0, log(2) · 2−12) ; we thus give a few values of our
bounds for the binade [2−14, 2−13) in Table 5.

𝑘 rel. radius
[2−14, 2−13)

11 14%
12 19%
13 26%
14 38%
15 54%

TABLE 5
Some more CRlibm-specific bounds for the exponential function,

binary64 format

4.4 Discussion

We now try to summarize the teachings that our experiments
bring regarding our bounds.

4.4.1 The good situations

In all situations presented above, our experiments show that,
as expected, our bounds provide orders of magnitude which
go from very precise to reasonable when 𝑘 approaches 𝑝/3.
As expected, the relative quality of our bounds improve a
lot with 𝑝 for fixed 𝑘 – Remark 4 states that we expect the
relative quality to be of the order 2𝑘−𝑝/3 when input and
output exponents are close to 0.
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Until this paper only the probabilistic model (and no
rigorous result – except for binary32 where complete enumer-
ation is easy) was available. Note in particular that Tables 1
and 3 cover ranges for 𝑘 which correspond to the values of
𝑘 used commonly for the implementation of the quick phase
of CRLibm functions – as such, demonstrate that results are
sufficiently sharp to allow for a rigorous analysis of Ziv’s
method in that setting (see also Table 5). One might wonder
also how our bounds work for MPFR [12] implementation
of Ziv’s strategy; MPFR code suggests that the number of
guard bits, depending on the function, is usually of the
order of 𝑎 · log2(𝑝) + 𝑏 for 𝑎 ∈ {1, 2}, and not-too-large 𝑏;
this corresponds to 𝛿 ≈ 2−𝑏𝑝−𝑎, a range where our bounds
will be even better than for CRlibm except for very small
intervals or very small/large output exponents, see below.

4.4.2 The bad situations

In this subsection we specifically target a few examples where
we expect our bounds to behave poorly. In view of Remark 4
and Section 4.1, it should come as no surprise that the bounds
behave poorly in the situations where

∙ Phenomenon 1: 𝜆 is either larger than the expected
2−𝑝 (which means either large 𝑒1 or large negative 𝑒2)

∙ Phenomenon 2: or, conversely, 𝜆 much smaller than
expected – in which case the term (𝛿/𝜆)1/2 may grow
wild (which means large negative 𝑒1 or large 𝑒2).

∙ Phenomenon 3: Also, if 𝑀 is much smaller than 2𝑝−1,
the term, independent of 𝑀 , (𝛿/𝜆)1/2 may become
larger than the main term 2𝑀𝛿 which has a linear
dependency in 𝑀 ; to fix ideas, when exponents are
close to zero, this is bound to happen whenever 𝑀
becomes smaller than 2(𝑝+𝑘)/2.

Note that Phenomena 2 and 3 are related with the some-
what unavoidable term (𝛿/𝜆)1/2, see the end of Section 3.

Phenomena 1 & 2 do not occur for the cube root function,
as we can always restrict to exponents in the range [0, 2].

Phenomenon 1 is obvious on the case of the binade
(−64,−32] of the exponential function where the results are
terribly bad: in binary64 with 𝛿 = 2−15, we get a (ridiculous)
bound for the number of bad cases of the order of 2128,
whereas the right order of magnitude is expected to be 238.

Phenomenon 2 depends on the relative order of mag-
nitudes of 𝑝 vs. 𝑒1, 𝑒2 and would be somewhat visible on
the binades [1/64, 1/32) and [32, 64) in binary32. It becomes
visible, for instance, in binary64 on the binade [2−25, 2−24)
where for 𝛿 = 2−5 the bound is already trivial – and, in
order to compare with previous tables, the relative radius is
already ≈ 3660%.

What happens on the binade [32, 64) in binary64 and
binary128 is of a different nature and comes mostly from
the fact that we have to split the interval (i.e., essentially
Phenomenon 3) in many sub-intervals over which our bound
is much worse. We come back to Phenomenon 2 in the final
remark below.

Note that Phenomenon 1 corresponds to large (in absolute
value) 𝑥 or zeros of 𝜙, and case Phenomenon 2 to small 𝑥
(again in absolute value) or 𝑥 close to a singularity of 𝜙.
Note also that if 𝑒1 and 𝑒2 are simultaneously large or small
with 𝑒2 ≈ 2𝑒1, neither Phenomenon 1 nor 2 occurs; this may

happen if 𝑥 is a zero of order 2 of 𝜙, or if 𝜙(𝑥) tends to
infinity as 𝑥2.

It should probably be pointed that in the bad cases
problem and Ziv’s strategy, for most elementary functions
the situations of very large/small input/output exponents
are handled in a specific way, and we feel that those bad
situations have thus little importance on the relevance of our
results.

4.4.3 One further comment

Often in our tables, the relative radius seems to roughly get
multiplied by 2 when 𝑘 increases by 1. It comes from the
fact that in practice the 𝑀𝜆1/3 term of the error bound
often seems to dominate over the term (𝛿/𝜆)1/2 even
for moderately small values of 𝛿. As the former term is
independent of 𝛿, this means that the error bound is close
to constant when 𝛿 varies, explaining why the percentages
displayed double when 𝑘 increases by one – the error term
does not change a lot while the main term decreases by a
factor of 2.

Note that when Phenomenon 2 occurs (i.e. (𝛿/𝜆)1/2

dominates) this no longer happens and a similar analysis
shows that the relative radius then increases by a factor of√
2 when 𝑘 increases by 1.

5 CONCLUSION

In this paper, we gave the first rigorous version of a heuristic
commonly used by the designers of mathematical libraries.
To do so, we established some theoretical statements, based
on so-called exponential sums techniques. Our results apply
to any 𝒞2 function and, though we only dealt with the radix
2 case, our results would remain valid for any other radix.

Our experiments demonstrate that, even though our
bounds have their weaknesses, they provide sharp results
for the analysis of the first phase of Ziv’s strategy. They
legitimate the two Ziv step strategy used for instance by
the designers of the CRlibm library: it makes it possible to
evaluate some elementary functions with correct rounding
while keeping an average performance and a memory
overhead due to correct rounding negligible [9], [10].

The current main limit in our work is the fact that, if 𝑝
denotes the precision of the floating-point environment that
we use, we can roughly estimate the numbers of bad cases
up to 𝑘 ≈ 𝑝/3 bits but not beyond. Note that the nature of
our techniques makes doubtful the fact that we shall ever be
able to tackle the “worst cases” (which would correspond to
𝑘 ≈ 𝑝).

There are two reasons for the current 𝑘 ≈ 𝑝/3 limit: we
lose the parameter 2−𝑘 in some terms of the result stated in
Lemma 2; and the use of Theorem 2. However, the latter has
been shown to be optimal for 𝒞2 functions [31].

In the future, we shall focus on tackling some improve-
ments of these two results, for instance in the more restrictive,
and yet quite relevant and useful, framework of elementary
and special functions. We shall also try to overcome to some
extent some of the phenomena pointed in Subsection 4.4.2,
in order for instance to be able to cope with large arguments
of trigonometric functions.
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