Exponential Adams Bashforth ODE solver for stiff problems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Exponential Adams Bashforth ODE solver for stiff problems

Résumé

We analyze in this paper a class of explicit exponential methods for the time integration of stiff differential problems. Precisely, we considered Adams exponential integrators with general varying stabilizers. General stabilization brings flexibility and computational facilities for ODE systems and for semilinear evolution PDEs coupled with ODE systems. Stability and convergence are proven, by introducing a new framework that extends multistep linear methods. Dahlquist stability is numerically investigated. A(α)-stability is observed under a condition on the stabilizer, which is a singular property for explicit schemes. The methods are numerically studied for two stiff models in electrophysiology. Its performances are compared with several classical methods. We conclude that for stiff ODE systems, it provides a cheaper way to compute accurate solutions at large time steps than implicit solvers.
Fichier principal
Vignette du fichier
EAB_k_HAL_8-11.pdf (823.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01394036 , version 1 (08-11-2016)
hal-01394036 , version 2 (07-07-2017)
hal-01394036 , version 3 (20-09-2017)
hal-01394036 , version 4 (25-04-2018)

Identifiants

  • HAL Id : hal-01394036 , version 1

Citer

Yves Coudière, Charlie Douanla Lontsi, Charles Pierre. Exponential Adams Bashforth ODE solver for stiff problems. 2016. ⟨hal-01394036v1⟩
443 Consultations
1083 Téléchargements

Partager

More