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Exponential Adams Bashforth ODE solver for stiff problems

Y. COUDIÈRE, C. DOUANLA LONTSI, AND C. PIERRE

Abstract. We analyze in this paper a class of explicit exponential methods
for the time integration of stiff differential problems. Precisely, we considered
Adams exponential integrators with general varying stabilizers. General stabi-
lization brings flexibility and computational facilities for ODE systems and for
semilinear evolution PDEs coupled with ODE systems.
Stability and convergence are proven, by introducing a new framework that ex-
tends multistep linear methods. Dahlquist stability is numerically investigated.
A(α)-stability is observed under a condition on the stabilizer, which is a singular
property for explicit schemes. The methods are numerically studied for two stiff
models in electrophysiology. Its performances are compared with several classi-
cal methods. We conclude that for stiff ODE systems, it provides a cheaper way
to compute accurate solutions at large time steps than implicit solvers.

1. Introduction

Stiff differential problems are commonly encountered in many fields and very di-
verse applications. Stiffness is the source of considerable increase in computational
effort. Consider a stiff ODE system, written as a general Cauchy problem,

(1)
dy

dt
= f(t, y), y(0) = y0.

Implicit and explicit methods are classical choices for its resolution. On one hand,
implicit methods require non linear solvers that may cause significant additional
costs both computationally and in terms of implementation effort for complex
applications. On the other hand explicit methods induce the resort to very fine
discretization grids in order to maintain stability.

An alternative way is exponential integrators : a class of explicit methods mean-
while exhibiting strong stability properties. Exponential integrators motivated
many studies along the past 15 years, among which we quote e.g. [13, 7, 14, 17,
30, 21] and refer to [23, 15, 12] for general reviews. Numerical instabilities are
caused by the eigenvalues of largest negative real part in the system (1) Jacobian
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matrix. The basic idea for exponential integrators is to split equation (1) into a
linear part and a non linear part,

(2)
dy

dt
= a(t, y)y + b(t, y), y(0) = y0.

The linear part a(t, y) is used to stabilize the resolution. The stabilization is
based on the observation that an exact integration of problem (2) is available
when b(t, y) = 0 and a(t, y) = α is a constant, by computing eαh with h the time
step. This exponential computation is the additional cost of exponential methods
when compared to classical explicit methods.

Exponential integrators of Adams type are explicit multistep methods first intro-
duced in [24, 5] considering a constant linear part A = a(t, y) in (2). The schemes
are derived using a multistep polynomial interpolation of Adams Bashforth type
in the variation of constants formula. This approach is well suited for semilinear
evolution PDEs and their spatial discretization. It recently received an increasing
interest [29, 4, 25] and various convergence analysis have been done in this frame-
work [16, 1, 19].
Extensions towards non constant linear parts first have been led in the 70’s in
[20, 6]. Problem (1) is rewritten as,

dy

dt
= αny + cn(t, y), y(0) = y0 ∈ RN ,

with αny+ cn(t, y) = f(t, y) and where αn, referred to as the stabilizer, is updated
after each time step. In particular, the linearized exponential Adams method, where
the stabilizer αn is set to ∂yf(tn, yn), has been carefully analyzed in [16, 1, 19],
where convergence is proven.
However, setting the stabilizer αn to the Jacobian matrix ∂yf(tn, yn) has several
drawbacks. Considering the differential system (1), only part of its equations may
need stabilization. In this case, we would like to use only a part of the Jacobian
matrix to avoid dispensable computations. Exponential integrators basically re-
quire to compute terms of the form eαnh γ. In case of an ODE system, this is a
matrix vector product, with matrix the exponential of αnh. Its computation is
not straightforward, various numerical strategy have been considered so far, see
[15, 12] for reviews. This difficulty vanishes when αn is a diagonal matrix. Nørsett
already observed this in its original paper [24]. He actually suggested to use the di-
agonal part of the Jacobian matrix only. Considering general stabilizers αn brings
a lot of flexibility. More details are given in section 2.4.

We present in this paper a theoretical and numerical analysis for general vary-
ing stabilizers αn. That case will be referred to as exponential Adams Bashforth
and shortly denoted EAB. Together with the EAB scheme, we introduce a new
variant of it, that we called integral exponential Adams Bashforth, denoted I-EAB.
Convergence and stability results will be proven for these two methods.
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A general explicit linear multistep method (see e.g. [10]) formulates as,

yn+1 = M(h)Y + hΨh(tn, Y ),

where Y = (yn, . . . , yn−k+1) is a vector composed of the k data at time instant
tn, . . . , tn−k+1. It involves a constant linear part M(h) and a non linear Lipschitz
function Ψh. For such methods, a classical result stares that (see e.g. [10, chapter
III.4]) convergence is equivalent to consistency and stability under perturbation.
However, for EAB methods, the linear part above depends on the stabilizer αn.
It is of the form M(h, αn) and is no longer constant. Hence, EAB methods are
not linear multistep method. The previous theorem of convergence does not apply
and an alternative analysis is needed.
We develop here an extension of this theorem towards multistep exponential in-
tegrators. General sufficient conditions for stability under perturbation and con-
vergence are given in theorem 1. Then this theorem is used to prove convergence
and stability under perturbation for the EAB and I-EAB schemes with varying
stabilizer αn

Consider the linear equation y′ = λy. When setting the stabilizer as αn = λ,
exponential integrators are exact and so A-stable. However, when considering gen-
eral stabilizers, the relationship between the Dahlquist stability and the stabilizer
definition has to be studied. We analyze the Dahlquist stability properties of EAB
methods with that point of view in this paper. Following a concept introduced in
[26], the Dahlquist stability domain is defined up to a parameter θ. This parameter
measures with what accuracy the stabilizer αn approximates the system Jacobian
matrix.
We numerically establish that EAB methods are A(α) stable provided that the
stabilizer is sufficiently close to the system Jacobian matrix (precise definitions
are in section 5). Moreover the angle α approaches π/2 when the stabilizer goes
to the system Jacobian matrix. In contrast, there exists no A(0) stable explicit
linear multistep method (see [11, chapter V.2]). This property is quite remarkable
for explicit methods.

We provide a numerical analysis for the EAB and I-EAB scheme properties,
including comparisons with several classical methods. We considered for this an
application in cardiac electrophysiology. Models in cardiac electrophysiology dis-
play stiff behaviors. Exponential integrators have already been studied for their
resolution in [26, 3]. We here set the stabilizer to a part of the Jacobian matrix
diagonal, that corresponds to the model stiffest equations. Robustness to stiffness
is studied with this choice. It is numerically shown to be comparable as for im-
plicit methods both in terms of accuracy and of stability condition on the time
step. We conclude that EAB methods are well suited for solving stiff differential
problems. In particular they allow computations at large time step with good
accuracy properties and cheap cost.
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The paper is organized as follows. The EAB and I-EAB methods are introduced
in section 2. In section 3 is stated and demonstrated the general convergence and
stability theorem. Convergence and stability under perturbation for EAB and I-
EAB scheme proofs follow in section 4. In section 5 is investigated the Dahlquist
stability properties of EAB method and the numerical experiments end this paper
in section 6.

2. Scheme definition

The methods presented here are k-multistep methods with time step h. The
numerical solution yn+1 at time instant tn+1 = (n + 1)h is computed using the
numerical data yn, . . . , yn−k+1 at time instants tn, . . . , tn−k+1.

2.1. Recall on Adams Bashforth. That classical scheme, see e.g. [10], follows
from the integration of eq. (1) on (tn, tn+1),

y(tn+1) = y(tn) +

∫ tn+1

tn

f(τ, y(τ))dτ.

The method is defined by replacing in this formula the function t 7→ f(t, y(t)) by its

Lagrange polynomial f̃n at time steps tn . . . tn−k+1. Precisely f̃n is the polynomial
of lowest degree satisfying f̃n(tn−j) = f(tn−j, yn−j) for j = 0 . . . k − 1. This yields

the numerical scheme yn+1 = yn +
∫ tn+1

tn
f̃n(τ)dτ .

2.2. The Integral Exponential Adams Bashforth method of order k.
Shortly denoted I-EABk, the method applies to problem (2). It is based on the
variation of constants formula,

y(tn+1) = eg(tn+1)

(
y(tn) +

∫ tn+1

tn

e−g(τ) b(y(τ), τ)dτ

)
,

where g(t) =
∫ t
tn
a(τ, y(τ))dτ . The numerical scheme is obtained by replacing the

two functions t 7→ a(t, y(t)) and t 7→ b(t, y(t)) by their Lagrange polynomials ãn
and b̃n at time steps tn . . . tn−k+1. Precisely ãn and b̃n are the two polynomials of
lowest degree that satisfy ãn(tn−j) = a(tn−j, yn−j) and b̃n(tn−j) = b(tn−j, yn−j)) for
j = 0 . . . k − 1,. The I-EABk scheme is given by,

(3) yn+1 = eg̃n(tn+1)

(
yn +

∫ tn+1

tn

e−g̃n(τ) b̃n(τ)dτ

)
,

where g̃n(t) =
∫ t
tn
ãn(τ)dτ .

In practice, a quadrature rule is required to evaluate yn+1, details are given in
section 6.2.
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2.3. Case of a constant linear part. When a(t, y) = α is a constant, yn+1 in
eq. (3) can be computed explicitly. In this case we have ãn(t) = α, g(t) = α(t− tn)

and the interpolation polynomial b̃n(t) reads,

b̃n(t) =
k−1∑
j=0

βnj
j!

(
t− tn
h

)j
,

where the coefficients (βnj)j=0...k−1, given in table 1, are the unique solution to the
linear system,

k−1∑
j=0

βnj
j!

(−i)j = b(tn−i, yn−i) := bn−i, i = 0 . . . k − 1.

With these notations, formula (3) becomes,

yn+1 = eαh yn + eαh
k−1∑
j=0

∫ tn+1

tn

e−α(s−tn)
βnj
j!

(
s− tn
h

)j
ds

= eαh yn + h
k−1∑
j=0

βnj

∫ 1

0

eαh(1−θ)
θj

j!
dθ,

and finally,

(4) yn+1 = eαh yn + h
k−1∑
j=0

ϕj+1(αh)βnj,

where the functions ϕj, originally introduced in [24], are defined by by the recursive
relations,

(5) ϕ0(z) = ez, ϕj+1(z) =
ϕj(z)− ϕj(0)

z
and ϕj(0) =

1

j!
.

Table 1. Coefficients βnj for the I-EABk schemes, case a(t, y) = α
– and for the EABk schemes (read c instead of b).

k 1 2 3 4
βn0 bn bn bn bn
βn1 – bn − bn−1 3

2
bn − 2bn−1 + 1

2
bn−2

11
6
bn − 3bn−1 + 3

2
bn−2 − 1

3
bn−3

βn2 – – bn − 2bn−1 + bn−2 2bn − 5bn−1 + 4bn−2 − bn−3
βn3 – – – bn − 3bn−1 + 3bn−2 − bn−3
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2.4. The Exponential Adams Bashforth method. The simplification of the
I-EABk scheme in case of a constant linear part is very interesting for practical
implementation purposes. To benefit from these simplifications with a varying
function a(t, y), assume that a constant approximation αn of a(t, y) on the interval
(tn, tn+1) is available. The coefficient αn will be called the stabilizer at time tn.
Hence equation (2) can be rewritten on each interval (tn, tn+1) as,

dy

dt
= αny + cn(t, y) with cn(t, y) = b(t, y) + (a(t, y)− αn)y.

As previously, we denote by c̃n the Lagrange polynomial of degree at most k − 1
of the cn, defined by c̃n(tn−i) = cn(tn−j, yn−i) := cn−i for i = 0 . . . k − 1. In this
framework equation (4) becomes,

(6) yn+1 = eαnh yn + h
k−1∑
j=0

ϕj+1(αnh)γnj,

where αn, γnj replace α, βnj, and where the functions ϕj are unchanged. The
coefficients γnj can be computed as in table 1 with cn−i instead of bn−i.

Equation (6) defines the Exponential Adams Bashforth method of order k, de-
noted by EABk. The EABk method is characterized by the choice of αn at the
successive time steps. We make the assumption that the stabilizer is defined from
the knowledge of the approximation of the k previous time steps,

(7) αn = α(Y, tn, h), Y = (yn, . . . , yn−k+1), α continuous.

This definition will naturally depend on a(t, y). For instance, the particular choice
αn = a(tn, yn) will be made in the numerical section 6. More general definitions
can however be considered: only the following constraint is imposed,

(8) if a(t, y) has a compact support then |α(Y, tn, h)| ≤ C,

with C only depending on the function (t, y)→ a(t, y).
A versatile choice for αn has significant practical consequences. In particular it

makes EABk method quite relevant in the context of ODE systems and of reaction
diffusion PDEs coupled with ODE systems.

– In the case of an ODE system, αn is a matrix. The definition of ϕj(αnh)
still makes sense since the functions ϕj are analytic (it also makes sense if
αn is a bounded operator on a Banach space). Then, ϕj(αnh)γ in eq. (6)
is a matrix vector product. Its computation is delicate in general. This
has led to various strategy, such as Pade approximations, as developed in
[15]. However this difficulty vanishes if αn is a diagonal matrix. This case
is achieved by setting αn to the Jacobian matrix diagonal.

– Still in case of an ODE system, only part of it might require stabilization.
This is realized by setting a block diagonal αn, as in section 6.
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– If α is a negative self adjoint operator, ϕj(αnh) is a bounded operator,
since ϕj is bounded on the half complex plane {z ∈ C, Re z < 0}. This is
particularly interesting for reaction diffusion PDEs.

– In case of a reaction diffusion PDE coupled with an ODE system, choosing
a block diagonal αn, with one block related to the diffusion operator, allows
to split the PDE / ODE coupling for the computation of ϕj(αnh)γ.

Let us end with several remarks on the EABk method.

– Convergence and stability results for the EABk method in section 4 only
require conditions (7) and (8) so that αn can apparently be chosen arbi-
trarily. However this choice of course impacts the accuracy. The question
of the relationship between accuracy and the stabilizer definition will not
be studied in this paper.

– The computation of yn+1 in eq. (6) requires the computation of ϕj(αnh) for
j = 0, . . . , k. This computational effort can be reduced with the recursive
definition (5). In practice only ϕk(αnh) needs to be computed. This is
detailed in section 6.2.

3. Abstract theory

As developed in section 1, EAB and I-EAB methods do not belong to the linear
multistep method class. An alternative formalism is needed for their analysis. It
is developed here.

3.1. Definitions. Problem (2) is considered on some vector space E equipped
with a norm | · |E. We assume that it has a unique solution y : [0, T ] → E for
some final time T > 0. For a given time step h < T , we define the time instants
tn = nh for 0 ≤ n ≤ Nh := [T/h].
A k-multistep method is given by a scheme generator Sh,n that is a mapping defined
for all 0 < h < T , k − 1 ≤ n < Nh and Y ∈ Ek by,

(9) Sh,n : Y = (yk, . . . , y1) ∈ Ek 7→ Sh,n(Y ) = (sh,n(Y ), yk, . . . , y2) ∈ Ek,

where yk+1 := sh,n(Y ) ∈ E is computed, for instance, from formulas (3) or (6).
A numerical solution is a sequence (Yn) in Ek for n = k − 1 . . . Nh, so that,

Yn+1 = Sh,n(Yn), n = k − 1 . . . Nh − 1.

Numerical solutions will be asked to verify the following upper bound on their
initial data,

(10) |Yk−1|∞ ≤M,

where M is a fixed positive constant, and with | · |∞ the maximum norm on Ek.
A perturbation of a numerical solution (Yn) is a sequence (Zn) in Ek for n =

k − 1 . . . Nh, so that,

Zk−1 = Yk−1 + ξk−1, Zn+1 = Sh,n(Zn) + ξn+1, n = k − 1 . . . Nh − 1,
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with ξn ∈ Ek. We say that the scheme (9) is stable under perturbation if there
exist constants C > 0, ε0 > 0, and h0 > 0 such that, for all 0 < ε ≤ ε0, for any
numerical solution (Yn) constructed with a time step h < h0 and for all associated
perturbation (Zn) satisfying,

|ξk−1|∞ ≤ ε and max
n=k...Nh

|ξn|∞ ≤ hε,

then we have,

max
n=k...Nh

|Zn − Yn|∞ < Cε.

We denote Y (tn) = (y(tn), . . . , y(tn−k+1)) ∈ Ek the k successive values of the
exact solution up to the time instant tn. We say that the scheme (9) is consistent
of order p if there exist constants C > 0 and h0 > 0 such that, for all 0 < h ≤ h0,

max
n=k−1...Nh−1

|Y (tn+1)− Sh,n(Y (tn))|∞ ≤ Chp+1.

We say that the scheme (9) is convergent of order p if there exist constants
C > 0, and h0 > 0 such that,

max
n=k...Nh

|Y (tn)− Yn|∞ ≤ C (hp + |Y (tk−1)− Yk−1|∞) ,

for all numerical solutions (Yn) associated with a time step h < h0.

3.2. Main result.

Theorem 1 (Convergence). Suppose that there exist constants C > 0 and h0 > 0
such that, for all 0 < h < h0, for all n = k − 1 . . . Nh − 1, and for any Y, Z ∈ Ek,

1 + |Sh,n(Y )|∞ ≤ (1 + |Y |∞) (1 + Ch),(11)

|Sh,n(Y )− Sh,n(Z)|∞ ≤ |Y − Z|∞ (1 + Ch(1 + |Y |∞)) ;(12)

then the scheme is stable under perturbation.
Moreover assume that it is consistent of order p, then it is convergent of order p.

Proof. Consider C > 0 and h0 > 0 such that conditions (11) and (12) hold. We set
0 < h < h0 and consider a numerical solution (Yn) for this time step. A recursion
on condition (11) gives,

(13) 1 + |Yn|∞ ≤ (1 + |Yk−1|∞) (1 + Ch)n−k+1 ≤ eCT (1 + |Yk−1|∞) ,

since (1 + x)p ≤ epx and (n− k + 1) ≤ T/h.
Now, consider a perturbation (Zn) of (Yn). Using eqs. (12) and (13), we have,

|Yn+1 − Zn+1|∞ ≤ |Sh,n(Yn)− Sh,n(Zn)|∞ + |ξn+1|∞
≤ |Yn − Zn|∞ (1 + Ch(1 + |Yn|∞)) + |ξn+1|∞
≤ |Yn − Zn|∞

(
1 + Ch eCT (1 + |Yk−1|∞)

)
+ |ξn+1|∞

≤ |Yn − Zn|∞ (1 + C?h) + |ξn+1|∞,
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where C? := C eCT (1 +M) and with M in eq. (10).
By recursion on n, we get for n = k, . . . Nh,

|Yn − Zn|∞ ≤ (1 + C?h)n−k+1 |Yk−1 − Zk−1|∞ +
n−k∑
i=0

(1 + C?h)i |ξn+1−i|∞

≤ ec
?T |ξk−1|∞ + max

j=k...n+1
|ξj|∞

n−k∑
i=0

(1 + C?h)i .

The geometrical sum can be computed,

n−k∑
i=0

(1 + C?h)i =
(1 + C?h)n−k+1 − 1

C?h
≤ eC

?T −1

C?h
≤ T

h
eC

?T ,

because (ex−1)/x ≤ ex for positive x. It follows that,

|Yn − Zn|∞ ≤ eC
?T

(
|ξk−1|∞ + T max

j=k...n+1
|ξj|∞/h

)
,

and the scheme is stable under perturbation.
Now assume that the scheme is also consistent of order p. We also denote by

C the consistency constant. Splitting the total error between consistency and
perturbation errors gives:

|Y (tn+1)− Yn+1|∞ = |Y (tn+1)− Sh,n(Yn)|∞
≤ |Y (tn+1)− Sh,n(Y (tn))|∞ + |Sh,n(Y (tn))− Sh,n(Yn)|∞
≤ Chp+1 + |Y (tn)− Yn|∞(1 + Ch(1 + |Yn|∞))

≤ Chp+1 + |Y (tn)− Yn|∞(1 + C?h),

by using eq. (13) in the last line. With a recursion on n,

|Y (tn)− Yn|∞ ≤ (1 + C?h)n−k+1 |Y (tk−1)− Yk−1|∞ + Chp+1

n−k∑
i=0

(1 + C?h)i

≤ ec
?T |Y (tk−1)− Yk−1|∞ + T ec

?T hp,

using the same upper bounds as previously. This last inequality states convergence
of order p and ends the proof. �

4. I-EABk and EABk stability and convergence

Definitions and notations of section 3 are considered here. We recall that for
the EABk scheme the stabilizer αn is given by the general definition (7) assumed
to satisfy (8).

Theorem 2. Assume that the functions a and b in problem (2) are Ck([0, T ]×R).
Then the I-EABk and EABk schemes are stable under perturbation and convergent
of order k.
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We proved theorem 2 in the case E = R only. The proof key arguments are a
Gronwall’s inequality, polynomial interpolation and the Urysohn’s Lemma. These
three tools holding for E = Rn, adaptation of theorem 2 in the case of ODE system
is above all technical and has not been carried out here for the sake of simplicity.
In the case of a reaction diffusion equation, where E is a Hilbert space, extension
of the given proof of theorem 2 is more delicate. In particular the Urysohn’s
Lemma considered here does not apply. This will imply to strengthen the general
assumption ’a and b are Ck([0, T ] × E)’, at least by adding ’uniformly Lipschitz
in y’.

Proof. If the functions a and b have Ck regularity, consistency of order k is ensured
by the consistency lemma 4. If they moreover have compact support, the stability
lemma 5 states that the stability conditions (11) and (12) are satisfied. Therefore
the convergence theorem 1 applies and the I-EABk and EABk schemes are stable
under perturbation and convergent of order k.

Now, for general Ck functions a and b, consider O a bounded open domain of
[0, T ]× R containing the graph of the solution: {(t, y(t)), t ∈ [0, T ]} ⊂ O. Using

the Urysohn’s lemma, we can consider two Ck functions ã and b̃ with compact
supports so that a(t, y) = ã(t, y) and b(t, y) = b̃(t, y) for (t, y) ∈ O.
By assumption, the function y(t) also is the solution of the equation y′ = ã(t, y)y+

b̃(t, y) with y(0) = y0. We have convergence of order k for the I-EABk and EABk

schemes on this problem. Therefore, for sufficiently small time step and sufficiently
small distance between the numerical and exact initial data, the numerical solution
for this problem is inside O. But then this numerical solution also is a numerical
solution for the original problem y′ = a(t, y)y + b(t, y) with y(0) = y0. Then,
under these conditions we have coincidence of the numerical solutions of these two
problems. This implies convergence of order k and stability under perturbation
for the original problem. �

4.1. Preliminary results. An additional notation for Lagrange interpolation is
needed. Let a continuous function f : (t, y) ∈ [0, T ]×R 7→ f(t, y) ∈ R, 0 < h < T ,
n = k − 1 . . . Nh and Y = (yk, . . . , y1) ∈ Rk. The Lagrange polynomial Ph,n(f, Y )
satisfying,

Ph,n(f, Y )(tn−i) = f(tn−i, yk−i) for i = 0 . . . k − 1,

of degree at most k − 1, is considered.
With this notation, an obvious consequence of formula (3) is the following defi-

nition for the I-EABk and EABk scheme generators.

Lemma 1 (Generator). Let 0 < h < T , n = k − 1 . . . Nh and Y = (yk, . . . , y1) ∈
Rk. Consider the problem,

(14)
dz

dt
= Ph,n(a, Y )z + Ph,n(b, Y ), z(tn) = yk,

then the I-EABk scheme generator satisfies sh,n(Y ) = z(tn+1).
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Alternatively consider the problem (recalling that cn(t, y) = b(t, y) − (a(t, y) −
αn)y),

(15)
dz

dt
= αnz + Ph,n(cn, Y ), z(tn) = yk,

then the EABk scheme generator satisfies sh,n(Y ) = z(tn+1).

The following Gronwall’s inequality (see [9, Lemma 196, p.150]) will be helpful.

Lemma 2 (Gronwall). Suppose that z(t) is a C1 function. If there exist α > 0
and β > 0 such that |z′(t)| ≤ α|t| + β for all t ∈ [t0, t0 + h], then |z(t)| ≤
|z(t0)| eαh +βh eαh, for all t ∈ [t0, t0 + h].

Eventually, estimates on Lagrange interpolating polynomials are required.

Lemma 3 (Interpolation). There exists a constant CL > 0 such that, for any
continuous function f : (t, y) ∈ [0, T ] × R 7→ f(t, y) ∈ R, for all 0 < h < T ,
k − 1 ≤ n ≤ Nh − 1, we have, for all Y, Z ∈ Rk,

sup
t∈(tn,tn+1)

|Ph,n(f, Y )(t)| ≤ CL max
i=0...k−1

|f(tn−i, yk−i)| ,

and

sup
t∈(tn,tn+1)

|Ph,n(f, Y )(t)− Ph,n(f, Z)(t)|

≤ CL max
i=0...k−1

|f(tn−i, yk−i)− f(tn−i, zk−i)| .

In addition, if the function f is Ck([0, T ]×R), then, for all function y : [0, T ]→
R of class Ck, and with the notation Y (tn) = (y(tn−i))i=0...k−1, we have

sup
t∈(tn,tn+1)

|f(t, y(t))− Ph,n(f, Y (tn))(t)| ≤ sup
[0,T ]

∣∣∣∣ dkdtk (f(t, y(t)))

∣∣∣∣hk.
Proof. We first define the reference mapping L : Y = (yk . . . y1) ∈ Rk 7→ LY where
LY is the polynomial of degree at most k so that, LY (−i) = yk−i for i = 0 . . . k−1.
We have, for any function f(t, y), and any 0 < h < T , k − 1 ≤ n ≤ Nh − 1,

Ph,n(f, Y )(t) = LF
(
t− tn
h

)
, where F = (f(tn−i, yk−i))i=0...k−1 .

The space of the polynomial q of degree k − 1 is supplied with the uniform norm
|q|∞ = sup0<ξ<1 |q(ξ)|. With that norm we denote by CL the norm of the linear
mapping L (that only depends on k). We have,

sup
tn<t<tn+1

|Ph,n(f, Y )(t)| = sup
0<ξ<1

|LF (ξ)| = |LF |∞ ≤ CL|F |∞ = CL max
i=0...k−1

|f(tn−i, yk−i)|.

This proves the first bound of the interpolation lemma 3.
Consider Z ∈ Rk and G = (f(tn−i, zk−i))i=0...k−1. Since L is linear, we have
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|Ph,n(f, Y )(t)−Ph,n(f, Z)(t)| =
∣∣LF−G ( t−tnh )∣∣, for all t ∈ (tn, tn+1). As previously,

sup
tn<t<tn+1

|Ph,n(f, Y )(t)− Ph,n(f, Z)(t)|

≤ CL max
i=0...k−1

|f(tn−i, yk−i)− f(tn−i, zk−i)| ,

which proves the second bound of the interpolation lemma 3.
At last, with the assumptions in lemma 3, the function φ : t ∈ [0, T ] 7→ f(t, y(t)) is
of class Ck([0, T ]). A classical result on Lagrange interpolation applied to φ states
that, for all t ∈ (tn, tn+1), there exists ξ ∈ (tn−k+1, tn+1), such that f(t, y(t)) −
LF
(
t−tn
h

)
= 1

k!
φ(k)(ξ)π(t), where π(t) =

∏k−1
i=0 (t− tn−i). For t ∈ (tn, tn+1), we have

|π(t)| ≤ k!hk, which proves the last bound of the interpolation lemma 3. �

4.2. Consistency analysis.

Lemma 4 (Consistency ). Assume that the functions a and b in problem (2) are
Ck([0, T ]× R). Then the I-EABk and EABk schemes are consistent of order k.

Proof. Consider the I-EABk scheme. With the generator lemma 1, the scheme
generator satisfies sh,n(Y (tn)) = z(tn+1) where z is the solution to problem (14).
Hence,

|(y − z)′| ≤ |Ph,n(a, Y (tn))| |y − z|+ |Ph,n(a, Y (tn))− a(t, y)| |y|
+ |Ph,n(b, Y (tn))− b(t, y)| .

With the interpolation lemma 3 we get |(y − z)′| ≤ α|y − z|+ βhk, with:

α = CL sup
[0,T ]

|a(t, y(t))| , β = sup
[0,T ]

|y| sup
[0,T ]

∣∣∣∣ dkdtk a(t, y(t)

∣∣∣∣+ sup
[0,T ]

∣∣∣∣ dkdtk b(t, y(t)

∣∣∣∣ .
The constants α and β only depend on the solution y, and the data a, b, T , and
k. Finally, we can use the Gronwall’s lemma 2 to prove that,

|y(tn+1)− sh,n(Y (tn))| = |y(tn+1)− z(tn+1)|
≤ |y(tn)− z(tn)| eαh +

(
βhk

)
h eαh ≤ β eαT hk+1,

because z(tn) = y(tn). This proves the consistency for the I-EABk scheme.
For the EABk scheme, sh,n(Y (tn)) = z(tn+1) where z is the solution to problem

(15). It follows that,

|(y − z)′| ≤ |αn||y − z|+ |Ph,n(cn, Y (tn))− cn(t, y)| .

With definition (7), the stabilizer can be uniformally bounded, αn ≤ α on the
solution y graph for 0 ≤ t ≤ T and for 0 ≤ h ≤ h0. Similarly, the functions
cn(t, y(t)) = b(t, y(t)) + (a(t, y(t))−αn)y(t) have uniformly bounded kth derivative
on [0, T ]. Proceeding as previously, we get the consistency for the EABk scheme.

�
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4.3. Stability analysis.

Lemma 5 (Stability). Assume that the functions a and b in problem (2) are
Ck([0, T ] × R) with compact support. Then the I-EABk and EABk schemes are
stable under perturbations.
More precisely, the stability conditions (11) and (12) in the convergence theorem 1
are satisfied by the I-EABk and EABk schemes.

Proof. Let us first consider the I-EABk scheme. By assumption on a and b , we
can choose a constant C > 0 such that,

CL sup
[0,T ]×R

|a(t, y)| ≤ C, CL sup
[0,T ]×R

|∂ya(t, y)| ≤ C,

CL sup
[0,T ]×R

|b(t, y)| ≤ C, CL sup
[0,T ]×R

|∂yb(t, y)| ≤ C.

With the interpolation lemma 3, we also have for all Y and Z ∈ Rk, and all
t ∈ (tn, tn+1),

|Ph,n(a, Y )(t)| ≤ C, |Ph,n(a, Y )(t)− Ph,n(a, Z)(t)| ≤ C|Y − Z|∞,
|Ph,n(b, Y )(t)| ≤ C, |Ph,n(b, Y )(t)− Ph,n(b, Z)(t)| ≤ C|Y − Z|∞.

For Y ∈ Rk consider y the solution of equation (14). For all t ∈ (tn, tn+1) we
have |y′| ≤ C(|y| + 1). The Gronwall’s lemma 2 gives |y(t)| ≤ eCh(|yk| + Ch) on
(tn, tn+1). With the generator lemma 1 we have sh,n(Y ) = y(tn+1). We get from
this,

|sh,n(Y )| ≤ |Y |∞ eCh +Ch eCh ≤ |Y |∞(1 + Ch eCh) + Ch eCh,

since ex ≤ 1 + x ex for x = Ch and |yk| ≤ |Y∞|. Then,

1 + |sh,n(Y )| ≤ (1 + |Y |∞)(1 + Ch eCh).

which proves the stability condition (11) because |Sh,n(Y )|∞ ≤ max(|sh,n(Y )|, |Y |∞).
Being given Y, Z ∈ Rk, and the associated solutions y and z in eq. (14), we have,

(y − z)′ = (Ph,n(a, Y )− Ph,n(a, Z))y + Ph,n(a, Z)(y − z) + Ph,n(b, Y )− Ph,n(b, Z).

The following bound for t ∈ (tn, tn+1) follows,

|(y − z)′| ≤ C|y − z|+ C|Y − Z|∞(|y|+ 1)

≤ C|y − z|+ C|Y − Z|∞
(
(|Y |∞ + Ch) eCh +1

)
≤ C|y − z|+ C|Y − Z|∞(1 + Ch eCh)(1 + |Y |∞),

where |y(t)| has been substituted by its bound (|Y |∞ + Ch) eCh. Using the Gron-
wall’s lemma 2 together with the generator lemma 1 we get,

|sh,n(Y )− sh,n(Z)| ≤
(
|yk − zk|+ Ch|Y − Z|∞(1 + Ch eCh)(1 + |Y |∞)

)
eCh .
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Because |yk−zk| ≤ |Y−Z|∞ and |Sh,n(Y )− Sh,n(Z)| ≤ max(|sh,n(Y )− sh,n(Z)| , |Y−
Z|∞), we obtain,

|Sh,n(Y )− Sh,n(Z)| ≤ |Y − Z|∞
(
1 + Ch(1 + Ch eCh)(1 + |Y |∞)

)
eCh .

Using again ex ≤ 1 + x ex for x = Ch shows that,(
1 + Ch(1 + Ch eCh)(1 + |Y |∞)

)
eCh ≤ 1 + Ch eCh

(
2 + Ch eCh

)
(1 + |Y |∞).

This proves the stability condition (12).
Let us now consider the EABk scheme. The definition cn = b+ (a− αn)y gives

∂ycn = ∂yb+ y∂ya−αn. By assumption on a and b and using the condition (8) on
αn, a constant C > 0 can be chosen so that,

|αn| ≤ C, CL sup
[0,T ]×R

|cn(t, y)| ≤ C(1 + |y|), sup
[0,T ]×R

|∂ycn(t, y)| ≤ C(1 + |y|).

The interpolation lemma 3 then ensures that,

|Ph,n(cn, Y )(t)| ≤ C(1 + |Y |∞),

|Ph,n(cn, Y )(t)− Ph,n(cn, Z)(t)| ≤ C(1 + |Y |∞)|Y − Z|∞.

For Y ∈ Rk consider y the solution of equation (15). For all t ∈ (tn, tn+1)
we have |y′| ≤ C|y| + C(1 + |Y |∞). The Gronwall’s lemma 2 gives |y(tn+1)| ≤
(|Y |∞ + Ch(1 + |Y |∞)) eCh. With the generator lemma 1, y(tn+1) = sh,n(Y ). We
get,

1 + |sh,n(Y )| ≤ 1 + |Y |∞(1 + Ch eCh) + Ch eCh(1 + |Y |∞)

≤ (1 + |Y |∞)(1 + 2Ch eCh),

with the inequality ex ≤ 1 + x ex for x = Ch. This proves the stability condition
(10) because |Sh,n(Y )|∞ ≤ max(|sh,n(Y )|, |Y |∞).
Consider now Z ∈ Rk and the associated solutions z of equation (15) so that
z(tn+1) = sh,n(Z). We have,

|y′ − z′| ≤ C|y − z|+ C(1 + |Y |∞)|Y − Z|∞.

The Gronwall’s inequality yields,

|Sh,n(Y )− Sh,n(Z)| ≤ |Y − Z|∞ (1 + Ch(1 + |Y |∞)) eCh

≤ |Y − Z|∞
(
1 + Ch eCh +Ch eCh(1 + |Y |∞)

)
≤ |Y − Z|∞

(
1 + 2Ch eCh(1 + |Y |∞)

)
,

that proves condition (12) for the EABk scheme and ends this proof. �
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Figure 1. On the three figures the function z ∈ R− 7→ ρθ(z)
have been plotted for various values of θ. A(0) stability holds when
lim−∞ ρθ(z) < 1.

5. Dahlquist stability

We consider in this section the problem (1) for the Dahlquist test function
f(t, y) = λy. For Re(λ) < 0, the exact solution satisfies |y(tn+1)/y(tn))| = ρ < 1.
Numerical solutions for linear multistep methods satisfy, see e.g. [11],∣∣∣∣yn+1

yn

∣∣∣∣ ≤ ρ(λh),
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where the function ρ : C→ R+ is defined pointwise by the maximum root modulus
of a family of polynomial depending on z = λh. The stability domain is defined
by D = {z ∈ C, ρ(z) < 1}. The scheme is said to be:

- A stable if C− ⊂ D,
- A(α) stable if D contains the cone with axis R− and with half angle α,
- A(0) stable if R− ⊂ D,
- stiff stable if D contains a half plane Re z < x ∈ R−.

Let us note that the I-EABk and EABk schemes coincide when considering the
Dahlquist test functions, which have a constant linear part. In the case αn = λ, the
scheme is exact, and thus A stable. However, when considering general stabilizer
αn, this equality does not hold. The following splitting is introduced,

f(t, y) = λy = a(t, y)y + b(t, y), a(t, y) = θλ and b(t, y) = λ(1− θ)y,

The parameter θ > 0 controls with what accuracy the exact linear part of f(t, y)
in eq. (1) is approximated by a(t, y) in eq. (2). Ideally, we would have θ = 1, but
practically, θ 6= 1, though we may hope that θ − 1 is small.
In the framework of exponential methods, the Dahlquist stability domain is defined
as Dθ, depending on the parameter θ, and associated to the stability function ρθ(z).
This concept had already been introduced in a similar way in [26].

5.1. A(0) stability. The stability functions ρθ(z) are numerically studied for z ∈
R−. These functions have been plotted for different values of the parameter θ. The
results are depicted on fig. 1. In all cases, we conjecture the existence of a limit as
z → −∞. The scheme is A(0) stable when this limit is lower than 1. From Figure
1,

- EAB2 scheme is A(0) stable if θ ≥ 0.75,
- EAB3 scheme is A(0) stable if 0.88 ≤ θ ≤ 1.9,
- EAB4 scheme is A(0) stable if 0.94 ≤ θ ≤ 1.2.

Roughly speaking, A(0) stability holds for the EABk scheme if the exact linear
part of f(t, y) in problem (1) is approximated with an accuracy of 75 %, 85 % or
95% for k = 2, 3 or 4 respectively.

5.2. A(α) stability. The stability domainsDθ have been plotted for various values
of θ taken from fig. 1. The results are depicted on figs. 2 to 4 for k = 2 to 4
respectively. Each figure shows the isolines ρθ(z) = 1. The stability domain Dθ is
on the left of these curves.

- Figure 2 shows that the EAB2 scheme is A(α) stable when θ = 0.75, 0.8
and 0.9 with α ' 50, 60 and 80 angle degrees respectively.

- Figure 3 displays A(α) stability with α ' 60, 70 and 60 angle degrees for
θ = 0.88, 0.9 and 1.9 respectively for the EAB3 scheme.
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Figure 3. Same thing as fig. 2 for the EAB3 scheme.

- For the EAB4 scheme eventually, A(α) stability holds with an angle α ap-
proximately of 65, 70 and 60 degrees for θ = 0.94, 0.95 and 1.2 respectively,
as shown on fig. 4.

In all cases, when A(α) stability is observed, the unstable region inside C− is made
of a discrete collection of uniformly bounded sets located along the imaginary axes.
Hence, the stability domain Dθ also contains half planes of the form Re(z) ≤ a < 0.
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Figure 4. Same thing as fig. 2 for the EAB4 scheme.

We conjecture that, when θ is so that the EABk scheme is A(α)-stable, then it is
also stiff stable.

6. Numerical results

We present in this section numerical experiments that investigate the conver-
gence, accuracy and stability properties of the I-EABk and EABk schemes.
As an example, they will be applied to a class of stiff models in cardiac electro-
physiology. Two models are considered, the Beeler-Reuter model (BR) [2] and the
Ten Tusscher et al. model (TNNP) [28], both designed for human cardiac cells.
The stiffness of these two models is due to the presence of different time scales
ranging from 1 ms to 1 s, as depicted on fig. 5. A challenge in this field is to pro-
vide accurate and efficient solvers for reaction diffusion PDEs including millions
of such cell models (basically one per spatial degree of freedom).
In all this section, for the EABk scheme, the stabilizer is defined as αn = a(tn, yn).
This definition satisfies the two conditions (7) and (8). For the chosen application,
αn will always be a diagonal matrix.

6.1. Application context. Classical models used to simulate the electrical ac-
tivity of cardiac cells are stiff ODE systems of the form, see [18, 2, 22, 28]:

dwi
dt

=
w∞,i(v)− wi

τi(v)
,

dc

dt
= g(w, c, v),(16)

dv

dt
= −Iion(w, c, v) + Ist(t),
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Figure 5. Two consecutive action potentials for the TNNP model:
transmembrane potential v (left) and the fast sodium current INa

(right), that is the main component of Iion during the fast upstroke
of the action potential.

where w = (w1, . . . , wp) ∈ Rp is the vector of the gating variables, c ∈ Rq is a vector
of ionic concentrations or other state variables, and v ∈ R is the cell membrane
potential. These equations model the evolution of the transmembrane potential of
a single cardiac cell. The four functions w∞,i(v), τi(v), g(w, c, v) and Iion(w, c, v)
are given reaction terms. They characterize the cell model. The function Ist(t) is
a source term. It represents a stimulation current.

Equations (16) intrinsically fit with problem (2) formulation, precisely with,

a(t, y) =

−1/τ(v) 0 0
0 0 0
0 0 0

 , b(t, y) =

 w∞(v)/τ(v)
g(y)

−Iion(y) + Ist(t)

 ,

for y = (w, c, v) ∈ RN (N = p + q + 1) and where a(t, y) is block diagonal with
−1/τ(v) the p× p diagonal matrix with diagonal entries (−1/τi(v))i=1...p.

6.2. Implementation and computational cost. The I-EABk and EABk schemes
are k-multistep explicit methods and so the computation of yn+1 requires the data
yn−k, an−k := a(tn−k, yn−k) and bn−k := b(tn−k, yn−k) at the k-previous time steps,
i.e. for k = 0 . . . k − 1.

EABk practical implementation. The stabilizer αn needs to be computed first at
each time step. Then the cnj = bn−j+(an−j−αn)yn−j, j = 0 . . . k−1 are computed,
defining the γnj in table 1.

The computation of yn+1 by formula (6) requires in addition the computation
of the ϕj(αnh)γnj. This is a matrix-vector product in general.
In the present case of a diagonal stabilizer, it becomes a scalar-scalar product per
row. The ϕj(αnh) are computed on all diagonal entries of αnh. This computation
simply necessitates to compute ϕ0(αnh) = eαnh (one exponential per non zero
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diagonal entry) thanks to the recursion rule (5).
In general, property (5) can be used to replace the computation of the ϕj(αnh)γnj
for j = 0..k by the computation of a single product ϕk(αnh)γ for a vector γ given
below. Denoting by w1 = anyn + bn and wj+1 = γnj + αnhwj:

- the EAB2 scheme reduces to,

yn+1 = yn + h [w1 + ϕ2(αnh)w2] ,

- the EAB3 scheme itself becomes,

yn+1 = yn + h [w1 + αnhw2/2 + ϕ3(αnh)w3] ,

- and eventually the EAB4 scheme reads,

yn+1 = yn + h [w1 + αnhw2/2 + αnhw3/6 + ϕ4(αnh)w4] .

I-EABk practical implementation. In addition, the I-EABk method (3) requires a
quadrature rule of sufficient order to preserve the scheme accuracy and convergence
order. We used the Simpson quadrature rule for the cases k = 2, 3 and the three
point Gaussian quadrature rule for k=4. We point out that an is assumed diagonal
here so that the matrix exponentials below actually are scalar exponential.

The I-EABk method with Simpson quadrature rule reads,

yn+1 = eg̃1 (yn + bnh/6) +
(
b̃1 + 4 eδ b̃1/2

)
h/6,

where (with the notations of section 2.2) g̃1 = g̃n(tn+1), δ = g̃1 − g̃n(tn + h/2),

b̃1 = b̃n(tn+1) and b̃1/2 = b̃n(tn + h/2). These coefficients are given for k = 2 by,

g̃1 = (3an − an−1)h/2, δ = (7an − 3an−1)h/8,

b̃1 = 2bn − bn−1, b̃1/2 = (3bn − bn−1)/2,

and for k = 3 by,

g̃1 = (23an − 16an−1 + 5an−2)h/12, δ = (29an − 25an−1 + 8an−2)h/24,

b̃1 = 3bn − 3bn−1 + bn−2, b̃1/2 = (15bn − 10bn−1 + 3bn−2) /8,

The I-EABk method with the three point Gaussian quadrature rule reads,

yn+1 = eg̃1
(
yn +

h

18

(
5b̃l e

−g̃l +8b̃0 e−g̃0 +5b̃r e−g̃r
))

,

with b̃s = b̃n(ts), g̃s = g̃n(ts) for s ∈ {l, 0, r} where tl = tn + (1 −
√

3/5))h/2,

t0 = tn + h/2, tr = tn + (1 +
√

3/5))h/2 and with g̃1 = g̃n(tn+1).
These parameters are linear combination of the data an−i, bn−i for i = 0 . . . , k− 1
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with fixed coefficients. Formula for k = 4 follow. The parameters b̃s are given by:

16 b̃0 =35 bn − 35 bn−1 + 21 bn−2 − 5 bn−3

40 b̃r =(95 + 179
√

15/15)bn − (107 + 119
√

15/5)bn−1

+ (69 + 79
√

15/5)bn−2 − (17 + 59
√

15/15)bn−3

and b̃l is the radical conjugate of b̃r (the radical conjugate of x+
√
y is x−√y).

And finally, the parameters g̃s definition is:

24/h g̃1 =55 an − 59 an−1 + 37 an−2 − 9 an−3,

384/h g̃0 =297 an − 187 an−1 + 107 an−2 − 25 an−3,

200/h g̃r =(797/4 + 45
√

15)an − (2233/12 + 47
√

15)an−1

+ (1373/12 + 29
√

15)an−2 − (331/12 + 7
√

15)an−3,

and g̃l is the radical conjugate of g̃r.

Computational cost. Consider an ODE system (1) whose numerical resolution cost
is dominated by the computation of (t, y) 7→ f(t, y). This might be the case in gen-
eral for “large and complex models”. For such problems explicit multistep methods
are relevant since they will require one such operation per time step. In regard,
explicit Runge Kutta will need several such operation. Implicit methods, associ-
ated to a non linear solver, may necessitate a lot of these operations, especially for
large time steps when convergence is harder to reach.

In addition, the I-EABk and EABk schemes need several specific operations. In
the case of a diagonal function a(t, y) they have been previously described: the
EABk require one scalar exponential computation per non zero row of a(t, y), the
I-EABk with Simpson rule needs twice more and the I-EAB3 with 3 point Gaussian
quadrature rule four times more.
Such a cost is not negligible, but is at worst of same order than computing (t, y) 7→
f(t, y) for complex models. For the TNNP model considered here, computing
(t, y) 7→ f(t, y) costs 50 scalar exponentials whereas the EABk implementation
adds 7 supplementary scalar exponentials per time step.

In terms of cost per time step, the EABk method is rather optimal. The rela-
tionship between accuracy and cost of the EABk method has been investigated in
[8]: more details are available in section 6.5.

6.3. Convergence. For the chosen application, no theoretical solution is avail-
able. Convergence properties are studied by computing a reference solution yref
for a reference time step href with the Runge Kutta 4 scheme. Numerical solutions
y are computed to yref for coarsest time steps h = 2phref for increasing p.
Any numerical solution y consists in successive values yn at the time instants
tn = nh. On every interval (t3n, t3n+3) the polynomial y of degree at most 3 so
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Figure 6. Relative L∞ error e(h) for the I-EABk and EABk

schemes, k = 2, 3 and 4, and for the BR model.

that y(t3n+i) = y3n+i, i = 0 . . . 4 is constructed. On (0, T ), y is a piecewise con-
tinuous polynomial of degree 3. Its values at the reference time instants nhref
are computed. This provides a projection P (y) of the numerical solution y on the
reference grid. Then P (y) can be compared with the reference solution yref . The
numerical error is defined by,

(17) e(h) =
max |vref − P (v)|

max |vref|
,

where the potential v is the last and stiffest component of y in eq. (16).
The numerical convergence graphs for the BR model are plotted on fig. 6. All

the schemes display the expected asymptotic behavior e(h) = O(hk) as h→ 0, as
proved in theorem 2.

6.4. Stability. The stiffness of the BR and TNNP models along one cellular elec-
trical cycle (as depicted on fig. 5) has been evaluated in [27]. The largest negative
real part of the eigenvalues of the Jacobian matrix during this cycle is of −1170
and −82 for the TNNP and BR models respectively. This basically means that
the TNNP model is 15 times stiffer than the BR model ( 15 ' 1170/82).
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We want to evaluate the impact of this increase of stiffness in terms of stability
for the EABk and I-EABk schemes and to provide a comparison with some other
classical time stepping methods. To this aim we consider the critical time step
∆t0. It is defined as the largest time step such that the numerical simulation
runs without overflow nor non linear solver failure for h < ∆t0. The numerical
evaluation of ∆t0 is quite easy for explicit methods. For implicit methods, the
choice of the non linear solver certainly impacts ∆t0. Without considering more
deeply this problem, we just carefully set up the non linear solver, so as to provide
the largest ∆t0. In practice, we have been using a Jacobian free Krylov Newton
method.

Table 2. Critical time step ∆t0

(a) Classical methods (b) I-EABk and EABk schemes
BR TNNP

AB2 0.124× 10−1 0.850× 10−3

BDF2 0.306 0.158
AB3 0.679× 10−2 0.464× 10−3

BDF3 0.362 0.181
AB4 0.372× 10−2 0.255× 10−3

RK4 0.338× 10−1 0.255× 10−2

BDF4 0.423 0.201

BR TNNP
I-EAB2 0.121 0.103
EAB2 0.424 0.233
I-EAB3 0.103 0.123
EAB3 0.203 0.108
I-EAB4 0.133 0.106
EAB4 0.122 0.756× 10−1

The Adams Bashforth (ABk) and the backward differentiation (BDFk) methods
of order k have been considered, together with the RK4 scheme.
The ABk and the RK4 schemes have bounded stability domain (see [11, p. 243]).
Then it is expected for the critical time step to be divided by a factor close to
15 between the BR and TNNP models. Results presented in table 2 show this
behavior.
The BDF2 scheme is A-stable whereas the BDF3 and BDF4 are A(α)-stable with
large angle α (see [11, p. 246]). Hence the critical time step is expected to remain
unchanged between the two models. Table 2 shows that the ∆t0 actually are
divided by approximately 2.

The critical time steps for the I-EABk and EABk models are presented in table 2.
The critical time steps for the I-EABk schemes remain almost unchanged from the
BR to the TNNP model. For the EABk, they are divided by approximately 2,
which behavior is similar as for the BDFk method.

As a conclusion, for the present application, the EABk and I-EABk methods are
as robust to stiffness than the implicit BDFk schemes, though being explicit. As
a matter of fact, section 5 shows that the stability domains for the I-EABk and
EABk schemes depends on the discrepancy between the complete Jacobian matrix
and a(t, y). In the present case, a(t, y) only contains a part of the Jacobian matrix
diagonal. It is very interesting to notice that robustness to stiffness is actually
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achieved with this choice. It is finally also interesting to see that the critical time
steps of implicit and exponential methods are of the same order.

6.5. Accuracy. In terms of accuracy, the schemes can be compared using the
relative error e(h) in eq. (17).

Table 3. Accuracy e(h) for the ABk,I-EABk and EABk schemes:
using the BR model and fixed time step h = 10−3

e(h)
AB2 5.32× 10−6

I-EAB2 8.55× 10−6

EAB2 7.90× 10−6

e(h)
AB3 4.33× 10−8

I-EAB3 4.44× 10−8

EAB3 7.00× 10−8

e(h)
AB4 8.69× 10−10

I-EAB4 7.30× 10−10

EAB4 1.16× 10−9

The EABk and I-EABk schemes can be compared with the ABk methods only at
very small time steps, because of the lack of stability of ABk schemes (see table 2).
In table 3 are given the accuracies of these methods for a given time step h = 10−3

and for the BR model. Ii is observed that the same level of accuracy is obtained
with ABk and EABk at fixed k. These figures illustrate that inside the asymptotic
convergence region, EABk, I-EABk and ABk schemes are equivalent in terms of
accuracy.

Table 4. Accuracy for the TNNP model

EABk
h k = 2 k = 3 k = 4
0.1 0.351 0.530 –
0.05 9.01× 10−2 5.59× 10−2 8.93× 10−2

0.025 2.14× 10−2 7.34× 10−3 8.34× 10−3

BDFk
k = 2 k = 3 k = 4
– – 0.129
3.57× 10−2 1.15× 10−2 1.44× 10−2

1.10× 10−2 2.58× 10−3 2.38× 10−3

Comparison at large time steps between the EABk and BDFk for the TNNP
model is shown in table 4. These figures show that for large time steps BDFk is
more accurate than EABk. A gain in accuracy of factor 2.5, 5 and 6 is observed
for h = 0.05 and for k=2, 3 and 4 respectively. However, compare row 3 for
EABk (h = 0.025) with row 2 for BDFk (h = 0.05). It shows that solutions
with an accuracy close to 0.01 are obtained when dividing the time step by (less
than) 2 between BDFk and EABk. Meanwhile, EABk with h = 0.025 costs less
than BDFk with h = 0.05, as developed in section 6.2. We conclude that EABk

schemes provide a cheaper way to compute numerical solutions at large time step
for a given accuracy. The same conclusion also holds for the BR model, see table 5.
A deeper analysis of the relationship between accuracy and computational cost for
the EABk scheme as compared to other methods is available in [8] with the same
conclusion.
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Table 5. Accuracy for the BR model

EABk
h k = 2 k = 3 k = 4
0.2 0.284 0.516 –
0.1 9.26× 10−2 9.17× 10−2 0.119
0.05 8.20× 10−2 1.09× 10−2 8.96× 10−3

BDFk
k = 2 k = 3 k = 4
9.74× 10−2 4.09× 10−2 4.98× 10−2

3.44× 10−2 1.04× 10−2 1.27× 10−2

9.74× 10−3 2.29× 10−3 2.02× 10−3

In table 5 are given the accuracies at large time step now considering the BR
model. Comparison with table 4 shows that accuracy is preserved by dividing h by
2 when switching from the BR to the TNNP model. As already said, the TNNP
model is 15 times stiffer than the BR model. We conclude that the EABk schemes
also exhibit a large robustness to stiffness in terms of accuracy. This robustness
is equivalent as for the implicit BDFk schemes. This is quite remarkable for an
explicit scheme, as for the robustness to stiffness in terms of critical time step
discussed in the previous subsection.
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