Joint Bayesian Deconvolution And Point Spread Function Estimation For Ultrasound Imaging - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Joint Bayesian Deconvolution And Point Spread Function Estimation For Ultrasound Imaging

Résumé

This paper addresses the problem of blind deconvolution for ultrasound images within a Bayesian framework. The prior of the unknown ultrasound image to be estimated is assumed to be a product of generalized Gaussian distributions. The point spread function of the system is also assumed to be unknown and is assigned a Gaussian prior distribution. These priors are combined with the likelihood function to build the joint posterior distribution of the image and PSF. However, it is difficult to derive closed-form expressions of the Bayesian estimators associated with this posterior. Thus, this paper proposes to build estimators of the unknown model parameters from samples generated according to the model posterior using a hybrid Gibbs sampler. Simulation results performed on synthetic data allow the performance of the proposed algorithm to be appreciated.
Fichier principal
Vignette du fichier
zhao_15224.pdf (273.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01387805 , version 1 (26-10-2016)

Identifiants

Citer

Ningning Zhao, Adrian Basarab, Denis Kouamé, Jean-Yves Tourneret. Joint Bayesian Deconvolution And Point Spread Function Estimation For Ultrasound Imaging. 12th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2015), Apr 2015, New York, NY, United States. pp.235-238, ⟨10.1109/ISBI.2015.7163857⟩. ⟨hal-01387805⟩
198 Consultations
174 Téléchargements

Altmetric

Partager

More