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ABSTRACT

This paper addresses the problem of blind deconvolution for ultra-

sound images within a Bayesian framework. The prior of the un-

known ultrasound image to be estimated is assumed to be a product

of generalized Gaussian distributions. The point spread function of

the system is also assumed to be unknown and is assigned a Gaus-

sian prior distribution. These priors are combined with the likeli-

hood function to build the joint posterior distribution of the image

and PSF. However, it is difficult to derive closed-form expressions

of the Bayesian estimators associated with this posterior. Thus, this

paper proposes to build estimators of the unknown model parameters

from samples generated according to the model posterior using a hy-

brid Gibbs sampler. Simulation results performed on synthetic data

allow the performance of the proposed algorithm to be appreciated.

Index Terms— Ultrasound imaging, image deconvolution,

Bayesian inference, Gibbs sampler.

1. INTRODUCTION

Ultrasound (US) imaging is widely used due to its advantages such

as being portable, cost effective and noninvasive. However, the US

images are contaminated by an intrinsic noise called speckle and

have low contrast and relatively low spatial resolution at a given fre-

quency. A 2D convolution model between the tissue reflectivity im-

age and the system point spread function (PSF) is commonly used

to model US images. As a consequence, deconvolution methods are

widely used to improve the quality of US images.

Deconvolution is an ill-posed problem. In US imaging, Gaus-

sian and Laplacian distributions are widely used as a priori knowl-

edge for the reflectivity image to solve this ill-posed problem [1, 2].

Moreover, the generalized Gaussian distribution (GGD) has been re-

cently shown to be appropriate for the statistical properties of US

images [3]. Based on this assumption, Alessandrini et al. have devel-

oped an EM-based US deconvolution algorithm with GGD prior that

we have recently improved using a hierarchical Bayesian model [4].

An important challenge in US image deconvolution is that the PSF is

unknown in practical situations. Most of the reported methods con-

sider the estimation of the PSF as an initialization step, followed by

an US image deconvolution [5], [6]. Methods for estimating jointly

the unknown US image and the PSF have also been recently pro-

posed, see e.g., [1] which proposed Gaussian priors for both tissue

reflectivity and PSF.

Unfortunately, the PSF is shift-variant along the axial direction

in US imaging. This problem has been handled by partitioning

the image into several regions in which the PSF is assumed shift-

invariant locally [5]. Using this assumption, we propose to solve the

blind deconvolution problem in a Bayesian framework. Precisely,

GGD priors are assigned to the US reflectivities and coupled with a

Gaussian prior for the PSF. A new posterior distribution is then ob-

tained for joint image deconvolution and PSF estimation. However,

it is difficult to compute closed-form expressions of the Bayesian

estimators for the unknown parameters of this posterior. Conse-

quently, we study an MCMC sampling method generating samples

according to the posterior of our model which are further used to

construct Bayesian estimators. The reported simulations show that

the proposed method outperforms our previous approach using an

estimated PSF resulting from a pre-processing step [4].

The paper is organized as follows. Section 2 introduces the pro-

posed Bayesian model and the associated hybrid Gibbs sampler for

the deconvolution of ultrasound images with an inaccurate knowl-

edge about the point spread function. Simulation results are pre-

sented in Section 3 and conclusions are reported in Section 4.

2. BAYESIAN FRAMEWORK

2.1. Problem Statement

The linear model used for US image restoration can be defined using

the following matrix-vector formulation

y = Hx+ n (1)

where y and x are vectors of RN×1 obtained after lexicographical

order of the radio-frequency (RF) and tissue reflectiviy images, n

is an additive white Gaussian noise (AWGN) and H ∈ R
N×N is a

circulant matrix associated with the PSF. Note that an efficient im-

plementation of the matrix-vector product in (1) is obtained by using

the direct and inverse Fourier transforms as follows

Hx = F
T [Fh. ∗ Fx] = F

T [h̃. ∗ x̃] (2)

where the matrices F and FT correspond to Fourier and inverse

Fourier transforms, .∗ is the Hadamard product, h is the first row

of H and φ̃ = Fφ is the Fourier transform of the vector φ. The

relation (2) is based on the property of circulant matrices, i.e., H =
FTΣHF, where ΣH = diag(h̃). The goal of the blind deconvolu-

tion problem studied here is to estimate the reflectivity image x and

the PSF H by using a hierarchical Bayesian model.

2.2. Hierarchical Bayesian model

The hierarchical Bayesian model proposed in this work requires to

define appropriated prior distributions for the unknown vector Θ =



(x,H, σ2
n). The joint posterior distribution of Θ can then be calcu-

lated from the product of the likelihood function and the prior dis-

tributions. The likelihood function and the prior distributions con-

sidered in this paper are defined in the following sections. Conse-

quently, the Bayesian estimators MAP or MMSE can be adapted for

the estimation of the unknown variable. In this paper, the MMSE

estimator is employed.

2.2.1. Likelihood

Assuming an AWGN sequence with covariance matrix σ2
nIN×N , the

likelihood function associated with model (1) is

p(y|Θ) =
1

(2πσ2
n)N/2

exp

(

−
1

2σ2
n

‖y −Hx‖22

)

(3)

where ‖ · ‖2 is the usual ℓ2-norm.

2.2.2. Priors

A. Reflectivity image. We assume that the pixels of the US im-

age are independent random variables distributed according to gen-

eralized Gaussian distributions (GGDs) [3]. Moreover, the pixels

of the US image belonging to different homogeneous regions are

supposed to be distributed according to GGDs with different param-

eters. This assumption makes sense in applications such as tumor

detection, where the tumor and the image background are charac-

terized by different sets of parameters. Precisely, we introduce a

label vector z ∈ R
N×1 to map the image into the different homo-

geneous regions. The ith label is such that zi = k if and only if

the corresponding pixel xi belongs to the class k ∈ {1, ..., K}. The

conditional distribution of the pixel xi is defined as

xi|zi = k ∼ GGD(ξk, γk)

where ξk and γk are the shape and scale parameters of the kth class.

Conditioned on the label vector, we obtain the following prior for

the reflectivity image

p(x|z, ξ,γ) =
K
∏

k=1

1
[

2γ
1/ξk
k Γ(1 + 1/ξk)

]Nk

exp

(

−
‖xk‖

ξk
ξk

γk

)

(4)

where ‖xk‖ξ = (
∑Nk

i=1 |xi|
ξ)1/ξ denotes the ℓξ-norm, xk contains

all the pixels assigned to class k, the shape and scale parameter vec-

tors are denoted as ξ = (ξ1, ..., ξK) and γ = (γ1, ..., γK) with

γk =
[

√

σ2
kΓ(1/ξk)/Γ(3/ξk)

]ξk
(σ2

k is the variance of class k),

Nk is the number of pixels in class k and Γ(·) is the gamma func-

tion. In this paper, the labels z are assumed to be known. However,

it could be interesting to estimate them with a Markov random field

prior as in [4].

B. Point Spread Function. The circular matrix H can be obtained

by cyclic shift of its first row h. Keeping in mind that the convolution

model is expressed in the Fourier domain (see (2)), a multivariate

Gaussian distribution is chosen for the prior of h̃ [7]

p(h̃) =
1

(2πσ2
h)

N/2
exp

(

−
1

2σ2
h

‖h̃− h̃0‖
2
2

)

(5)

where h̃0 is the Fourier transform of the first row of the circulant

matrix H0 and H0 is an initial estimation of the PSF (for instance

obtained with the method of [6]).

C. Noise variance In the presence of AWGN, it is typical to assign

a conjugate inverse gamma prior to the noise variance, i.e.,

p(σ2
n) =

να

Γ(α)

1

(σ2
n)α+1

exp

(

−
ν

σ2
n

)

1R+(σ
2
n) (6)

where 1A(.) is the indicator function on the set A. The two ad-

justable parameters α, ν make this prior very flexible and appropri-

ate for many applications.

2.2.3. Hyperpriors

The priors introduced above depend on some hyperparameters that

need to be fixed a priori or estimated within the algorithm. This

paper assumes that the hyperparameters associated with the noise

variance (α, ν), the PSF (σ2
h) and the reflectivity image (z) are fixed

a priori. However, the hyperparameters of the reflectivity image ξ, γ

are estimated via a hierarchical Bayesian model. We denote the hy-

perparameter vector to be estimated as Φ = {ξ,γ}. The hyperprior

of Φ is defined as p(Φ) = p(ξ)p(γ) with

p(ξ) =

K
∏

k=1

p(ξk) =

K
∏

k=1

1

3
1[0,3](ξk) (7)

p(γ) =
K
∏

k=1

p(γk) =
K
∏

k=1

1

γk
1R+(γk). (8)

We should notice that the choices above cover all the possible values

of the shape and scale parameters that one may encounter in practical

situations [4], [8].

2.2.4. Joint posterior function

Using Bayes’ rule, the joint posterior distribution of our model is

proportional to the product of the likelihood and the priors. Pre-

cisely, the following result can be obtained

p(Θ,Φ|y) ∝ p(y|Θ,Φ)p(Θ,Φ)

∝ p(y|x,H, σ2
n, ξ,γ)p(x,H, σ2

n, ξ,γ)

∝ p(y|x,H, σ2
n)p(x|ξ, γ)p(H)p(σ2

n) (9)

where the different probability density functions (pdfs) have been

defined in (3), (4), (5) and (6). Closed-form expressions of the

Bayesian estimators associated with the posterior (9) are clearly dif-

ficult to obtain. In such situation, one can use simulation methods

which generate samples distributed according to the posterior of in-

terest and use these samples to compute the estimators of the un-

known model parameters. It is the objective of the next section.

2.3. Hybrid Gibbs Sampler

The Gibbs sampler is one of the most popular Markov chain Monte

Carlo (MCMC) methods. It generates samples from a Markov

chain whose target distribution is the posterior distribution of inter-

est. Each step of the sampler consists of generating according to

the conditional distributions associated with the target distribution.

This section discusses how to sample according to the conditional

distributions of (9).



2.3.1. Noise variance

The conditional distribution of the noise variance σ2
n is

p(σ2
n|y,x,ξ,γ,H) ∝ p(y|x, σ2

n, ξ,γ,H)p(σ2
n)

∝

1

(σ2
n)

N

2
+α+1

exp

(

−
1

2σ2
n

‖y −Hx‖22 −
ν

σ2
n

)

.

It is the inverse gamma distribution

IG

(

α+
N

2
, ν +

1

2
‖y −Hx‖22

)

(10)

which is straightforward to sample.

2.3.2. Reflectivity image x

The conditional distribution of the US reflectivity image is

p(x|y, σ2
n,H,Φ) ∝ p(y|x, σ2

n,H,Φ)p(x|Φ)

∝ exp



−
1

2σ2
n

‖y −Hx‖22 −
K
∑

k=1

‖xk‖
ξk

ξk

γk



 . (11)

Generating samples from (11) is complicated due to the high dimen-

sionality of the image x and to the non-quadratic term ‖xk‖
ξk

ξk
. In

this work, we propose to use a Hamiltonian Monte Carlo (HMC)

method for this generation. This method has shown interesting re-

sults in the case of a known PSF (see [4] for details).

2.3.3. Point Spread Function

In this paper, we propose to sample h̃ instead of H. The likelihood

function can be rewritten as follows

p(y|x, σ2
n,Φ, h̃) =

1

(2πσ2
n)N/2

exp

(

−
1

2σ2
n

‖ỹ −ΣH x̃‖22

)

=
1

(2πσ2
n)N/2

exp

(

−
1

2σ2
n

‖ỹ −ΣX h̃‖22

)

(12)

where ΣH = diag(h̃) and ΣX = diag(x̃). Combining with the

prior of h̃, the conditional distribution of h̃ is defined as

p(h̃|y,x, σ2
n,Φ) ∝ p(y|x, σ2

n,Φ, h̃)p(h̃)

∝ exp

(

−
1

2σ2
n

‖ỹ −ΣXh̃‖22

)

exp

(

−
1

2σ2
h

‖h̃− h̃0‖
2
2

)

. (13)

The conditional distribution (13) is a multivariate Gaussian distribu-

tion

N (m̃post, R̃post) (14)

with

R̃
−1
post =

I

σ2
h

+
|ΣX |2

σ2
n

, m̃post = R̃post

(

h̃0

σ2
h

+
ΣX

T ỹ

σ2
n

)

(15)

where the subscript “post” stands for “posterior”. Note that (14) is

easy to sample and that the circulant matrix H can be easily obtained

from h̃ by inverse Fourier transform and cyclic shift.

2.3.4. Hyperparameters

A. Shape parameter ξ Assuming a priori independence between

the different shape parameters, the conditional distribution of param-

eter ξk can be obtained as follows

p(ξk|Θ, γ, ξ−k) ∝ p(y|x, σ2
n,H, ξ,γ)p(xk|ξk, γk)p(ξk)

∝ a
Nk

k exp

(

−
‖xk‖

ξk
ξk

γk

)

1[0,3](ξk) (16)

where ξ−k = (ξ1, ..., ξk−1, ξk+1, ..., ξK) for k ∈ {1, ..., K} and

where xk contains all the pixels assigned to the kth class.

The conditional distribution (16) is not easy to sample directly.

Thus, we propose to consider random walk Metropolis Hastings

(MH) moves with appropriate proposals [9]. More specifically, a

Gaussian distribution whose variance is adjusted a priori in order

to obtain a suitable acceptance ratio has been employed in our al-

gorithm. The candidates generated using this proposal are then ac-

cepted/rejected according to the standard MH acceptance ratio.

B. Scale parameter γ Assuming the different scale parameters

are a priori independent, the conditional distributions of the scale

parameters of the proposed GGDs can be written

p(γk|Θ, ξ,γ−k) ∝ p(y|x, σ2
n,H, ξ,γ)p(xk|ξk, γk)p(γk)

∝ IG

(

Nk

ξk
, ‖xk‖

ξk
ξk

)

(17)

where γ−k = (γ1, ..., γk−1, γk+1, ..., γK) for k ∈ {1, ..., K}.

Drawing samples from the inverse gamma distribution (17) is

straightforward.

2.3.5. Final Algorithm

The hybrid Gibbs sampler resulting from the previous sections is

summarized in Alg. 8. After removing the burn-in period of the

sampler, the remaining samples are averaged to compute the MMSE

estimates of the different unknown parameters.

Algorithm 1: Hybrid Gibbs Sampler

/* Initialization */

1 /* Sampling procedure */

2 for i = 1 : Nmc do

3 Sampling σ2
n according to (10).

4 Sampling x according to (11) with a HMC method.

5 Sampling h̃ according to (14).

6 Sampling ξ according to (16) using a Metropolis

Hastings move with a Gaussian proposal.

7 Sampling γ according to (17).

8 end

3. SIMULATION RESULTS

In this section, we present results obtained with synthetic US im-

ages to validate the performance of the proposed algorithm. The

US image simulation follows the approach described in [2]. Specif-

ically, the RF image is obtained by 2D convolution of a reflectiv-

ity image (of size 50 × 50) shown in Fig. 1(a) and a known PSF

(of size 11 × 11) simulated by Field II (developed by Jensen et.

al.), highlighted in Fig. 2(a). The samples of x are independent



and identically distributed according to GGDs with different param-

eters inside and outside the disk located in the center of the image

(GGD(ξin = 1.8, γin = 50) and GGD(ξout = 0.6, γout = 0.4)).
Moreover the RF image is contaminated by an AWGN correspond-

ing to a blurred-signal-to-noise-ratio (BSNR)1 of 40dB.

Fig. 1 shows the images estimated by the proposed method and

the method of [4]. Note that the method of [4] requires to estimate

the PSF in a preprocessing step using the algorithm of [6] and that it

was shown to provide better deconvolution results than the EM algo-

rithm of [3]. The objective of this simulation is to evaluate whether

the performance of the joint estimation of the image and PSF can

be improved or not when compared to the case where the PSF is es-

timated in a preprocessing step. Visually, one can observe that the

reflectivity image estimated with our method is very similar to the

true one, both in native and B-mode representations. The B-mode

is a commonly used representation of US images based on envelope

detection and log-compression. Quantitative results reported in Ta-

ble 1 show (in terms of ISNR, NRMSE and PSNR) that we obtain

a better performance with the proposed method when compared to

[4]. Note that the higher the values of ISNR, PSNR, the better the

performance. Conversely, the lower the NRMSE, the better.

(a) true x (b) x̂(proposed) (c) x̂ ([4])

(d)Bmode of (a) (e)Bmode of (b) (f)Bmode of (c)

Fig. 1. Original and restored US images (top: RF images, bottom:

B-mode images).
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Fig. 2. Original and estimated PSFs.

Table 1. Performance of reflectivity image estimation.

Methods ISNR(dB) NRMSE(dB) PSNR(dB)

Proposed 8.7597 0.8018 18.5373

[4] 4.1089 1.3696 18.0123

Table 2. Performance of PSF estimation.
Methods NRMSE(dB) PSNR(dB)

Proposed 0.7392 9.2301

[4] 0.7805 8.7575

The results in Fig. 2 allow the performance of the PSF estima-

tion to be appreciated. Figs. 2(c), 2(b) display the estimated PSFs

1BSNR = 10 log10
‖Hx−mean(Hx)‖22

Nσ2
n

obtained with the method of [4] and our approach. The interest of

estimating the PSF jointly with the image is confirmed by the quan-

titative metrics provided in Table 2 comparing the true PSF with its

estimates obtained with the proposed method and the method of [4].

4. CONCLUSIONS

This paper proposed a hierarchical Bayesian model for the joint esti-

mation of an ultrasound image and the system PSF. In order to solve

this ill-posed problem, generalized Gaussian priors were assigned to

the reflectivities of homogeneous regions of the image and a Gaus-

sian prior was chosen for the PSF. The results obtained on simulated

US data clearly highlight the interest of updating the PSF during the

deconvolution process. Future work includes the application of our

algorithm to real US data and the study of new estimation algorithms

with reduced computational complexity.
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