GENERAL-ORDER OBSERVATION-DRIVEN MODELS: ERGODICITY AND CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

GENERAL-ORDER OBSERVATION-DRIVEN MODELS: ERGODICITY AND CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR

Résumé

The class of observation-driven models (ODMs) includes the GARCH(1, 1) model as well as integer-valued time series models such as the log-linear Poisson GARCH of order (1, 1) and the NBIN-GARCH(1, 1) models. In this contribution, we treat the case of general-order ODMs in a similar fashion as the extension of the GARCH(1, 1) model to the GARCH(p, q) model. More precisely, we establish the stationarity and the ergodicity as well as the consistency and the asymptotic normality of the maximum likelihood estimator (MLE) for the class of general-order ODMs, under conditions which are easy to verify. We illustrate these results with specific observation-driven time series, namely, the log-linear Poisson GARCH of order (p, q) and the NBIN-GARCH(p, q) models. An empirical study is also provided.
Fichier principal
Vignette du fichier
genod2.pdf (468.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01383554 , version 1 (18-10-2016)
hal-01383554 , version 2 (04-04-2019)
hal-01383554 , version 3 (07-06-2021)

Licence

Identifiants

  • HAL Id : hal-01383554 , version 2

Citer

Tepmony Sim, Randal Douc, François Roueff. GENERAL-ORDER OBSERVATION-DRIVEN MODELS: ERGODICITY AND CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR. 2016. ⟨hal-01383554v2⟩
678 Consultations
473 Téléchargements

Partager

More