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GENERAL-ORDER OBSERVATION-DRIVEN MODELS:

ERGODICITY AND CONSISTENCY OF THE MAXIMUM

LIKELIHOOD ESTIMATOR

TEPMONY SIM, RANDAL DOUC, AND FRANÇOIS ROUEFF

Abstract. The class of observation-driven models (ODMs) includes many
models of non-linear time series which, in a fashion similar to, yet different
from, hidden Markov models (HMMs), involve hidden variables. Interestingly,
in contrast to most HMMs, ODMs enjoy likelihoods that can be computed

exactly with computational complexity of the same order as the number of
observations, making maximum likelihood estimation the privileged approach
for statistical inference for these models. A celebrated example of general or-
der ODMs is the GARCH(p, q) model, for which ergodicity and inference has
been studied extensively. However little is known on more general models, in
particular integer-valued ones, such as the log-linear Poisson GARCH or the
NBIN-GARCH of order (p, q) about which most of the existing results seem
restricted to the case p = q = 1. Here we fill this gap and derive ergodicity
conditions for general ODMs. The consistency and the asymptotic normality
of the maximum likelihood estimator (MLE) can then be derived using the
method already developed for first order ODMs.

1. Introduction

Since they were introduced in [7], observation-driven models have been receiving
renewed interest in recent years. These models are widely applied in various fields
ranging from economics (see [35]), environmental study (see [1]), epidemiology and
public health study (see [44, 11, 17]), finance (see [30, 36, 18, 24]) and population
dynamics (see [28]). The celebrated GARCH(1, 1) model introduced in [2] as well as
most of the models derived from this one are typical examples of ODMs; see [3] for a
list of some of them. A list of contributions on this class of models specifically dealing
with discrete data includes [39, 9, 26, 17, 20, 25, 18, 27, 33, 10, 16, 12, 19, 5, 6, 8]
and [14].

ODMs have the nice feature that the computations of the associated (conditional)
likelihood and its derivatives are easy, the parameter estimation is hence relatively
simple, and the prediction, which is a prime objective in many time series appli-
cations, is straightforward. However, it turns out that the asymptotic properties
of the maximum likelihood estimator (MLE) for this class can be cumbersome to
establish, except when they can be derived using computations specific to the stud-
ied model (the GARCH(1, 1) case being one of the most celebrated example). The
literature concerning the asymptotic theory of the MLE when the observed variable
has Poisson distribution includes [20, 18, 21] and [43]. For a more general case where
the model belongs to the class of one-parameter exponential ODMs, such as the
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Bernoulli, the exponential, the negative binomial (with known frequency param-
eter) and the Poisson autoregressive models, the consistency and the asymptotic
normality of the MLE have been derived in [10]. However, the one-parameter expo-
nential family is inadequate to deal with models such as multi-parametric, mixture
or multivariate ODMs (the negative binomial with all unknown parameters and
mixture Poisson ODMs are examples of this case). A more general consistency re-
sult, has been obtained recently in [12], where the observed process may admit
various conditional distributions. This result has later been extended and refined
in [14]. However, most of the results obtained so far have been derived only under
the framework of GARCH(1, 1)-type or first-order ODMs. Yet, up to our knowl-
edge, little is known for the GARCH(p, q)-type, i.e. larger order discrete ODMs, as
highlighted as a remaining unsolved problem in [41].

Here, following others (e.g. [39, 26]), we consider a general class of ODMs that
is capable to account for several lagged variables of both hidden and observation
processes. We develop a theory for the class of general-order ODMs parallel to
the GARCH(p, q) family. Our main contribution is to provide a complete set of
conditions for general order ODMs for proving the ergodicity of the process and the
consistency of the MLE, under the assumption of well-specified models. In principle,
the general order model can be treated by embedding it into a first-order one and
by applying the results obtained e.g. in [12, 14] to the embedded model. Yet the
particular form of the embedded model does not fit the usual assumptions tailored
for standard first-order ODMs. Here we derive efficient conditions taking advantage
of the asymptotic behavior of iterated versions of the kernels involved. Incidentally,
this also allows us to improve known conditions for some first-order models, as
explained in Remark 2-(4) below. To demonstrate the efficiency of our approach,
we apply our results to two specific integer valued ODMs, namely, the log-linear
Poisson GARCH(p, q) model and the NBIN-GARCH(p, q). Numerical experiments
involving these models can be found in [37, Section 5.5] for a set of earthquake data
from Earthquake Hazards Program [40].

The paper is structured as follows. Definitions used throughout the paper are
introduced in Section 2, where we also state our results on two specific examples.
In Section 3, we present our main results on the ergodicity and consistency of the
MLE for general order ODMs. Finally, Section 4 contains the postponed proofs and
we gather some independent useful lemmas in Section 5.

2. Definitions and examples

2.1. Observation-driven model of order (p, q). Throughout the paper we use
the notation uℓ:m := (uℓ, . . . , um) for ℓ ≤ m, with the convention that uℓ:m is the
empty sequence if ℓ > m, so that, for instance (x0:(−1), y) = y. The observation-
driven time series model can formally be defined as follows.

Definition 1 (General order ODM and LODM). Let (X,X ), (Y,Y) and (U,U)
be measurable spaces, respectively called the latent space, the observation space
and the reduced observation space. Let (Θ,∆) be a compact metric space, called
the parameter space. Let Υ be a measurable function from (Y,Y) to (U,U). Let{
(x1:p, u1:q) 7→ ψ̃θ

u1:q
(x1:p) : θ ∈ Θ

}
be a family of measurable functions from (Xp×

Uq,X⊗p ⊗ U⊗q) to (X,X ), called the reduced link functions and let
{
Gθ : θ ∈ Θ

}

be a family of probability kernels on X× Y, called the observation kernels. A time
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series {Yk : k ≥ −q + 1} valued in Y is said to be distributed according to an
observation-driven model of order (p, q) (hereafter, ODM(p, q)) with reduced link

function ψ̃θ, admissible mapping Υ and observation kernel Gθ if there exists a
process {Xk : k ≥ −p+ 1} on (X,X ) such that for all k ∈ Z+ = {0, 1, 2, . . .},

Yk | Fk ∼ Gθ(Xk; ·),
Xk+1 = ψ̃θ

Uk−q+1:k
(X(k−p+1):k),

(2.1)

where Uk = Υ(Yk) for all k > −q Fk = σ
(
X(−p+1):k, Y(−q+1):(k−1)

)
. We further say

that this model is a linearly observation-driven model of order (p, q) (shortened as
LODM(p, q)) if moreover

(i) All θ ∈ Θ can be written as θ = (ϑ, ϕ) with ϑ ∈ R1+p+q.
(ii) The latent space X is a closed subset of R, U = R and, for all x = x1:p ∈ Xp,

u = u1:q ∈ Rq, and θ = (ϑ, ϕ) ∈ Θ with ϑ = (ω, a1:p, b1:q),

(2.2) ψ̃θ
u(x) = ω +

p∑

i=1

ai xi +

q∑

i=1

bi ui .

Unless differently stated, we always assume that the model is dominated by a σ-
finite measure ν on (Y,Y), that is, for all θ ∈ Θ, there exists a measurable function
gθ : X × Y → R+ written as (x, y) 7→ gθ(x; y) such that for all x ∈ X, gθ(x; ·) is
the density of Gθ(x; ·) with respect to ν. In addition, we always assume that for all
(x, y) ∈ X× Y and all θ ∈ Θ,

(2.3) gθ(x; y) > 0 ,

and also, to avoid a trivial degenerate case, that ν ◦Υ−1 is non-degenerate, that is,
its support contains at least two points.

Remark 1. Let us comment briefly on this definition.

(1) The standard definition of an observation driven model does not include the
admissible mapping Υ and indeed, we can define the same model without
Υ by replacing the second equation in (2.1) by

Xk+1 = ψθ
Yk−q+1:k

(X(k−p+1):k), ,

where
{
(x1:p, y1:q) 7→ ψθ

y1:q
(x1:p) : θ ∈ Θ

}
is a family of measurable func-

tions from (Xp × Yq,X⊗p ⊗ Y⊗q) to (X,X ), called the (non-reduced) link
functions, and defined by

(2.4) ψθ
y(x) = ψ̃θ

Υ⊗q(y)(x) , x ∈ Xp , y ∈ Yq .

However by inserting the mapping Υ, we introduce some flexibility and
this is useful for describing various ODMs with the same reduced link func-
tion ψ̃θ. For instance all LODMs use the form of reduced link function
in (2.2) although they may use various mappings Υ’s. This is the case for
the GARCH, Log linear GARCH and NBIN GARCH, see below.

(2) When p = q = 1, then the ODM(p, q) defined by (2.1) collapses to the
(first-order) ODM considered in [12] and [14]. Note also that if p 6= q,
setting r := max(p, q), the ODM(p, q) can be embedded in an ODM(r, r),
but this requires augmenting the parameter dimension which might impact
the identifiability of the model.
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(3) The standard GARCH(p, q) model is a special case of LODM(p, q), in which
case X = R+, Y = R, Υ(y) = y2, and Gθ(x, ·) is a centered distribution
with variance x, most commonly the standard normal distribution.

The GARCH model has been extensively studied, see, for example, [4, 22, 23, 31,
24] and the references therein. Many other examples have been derived in the class
of LODMs. An important feature of the GARCH is the fact that x 7→ Gθ(x; ·) maps
a family of distributions parameterized by the scale parameter

√
x, which is often

expressed by replacing the first line in (2.1) by an equation of the form Yk =
√
Xkǫk

with the assumption that {ǫn : n ∈ Z} is i.i.d. Such a simple multiplicative formula
no longer holds when the observations Yk’s are integers, which seriously complicates
the theoretical analysis of such models, as explained in [41]. Also it can be of
interest to let θ depend on an extra parameter ϕ that may influence the conditional
distribution Gθ(x; ·).

Definition 2 (Space (Z,Z), Notation Pθ
ξ). Consider an ODM as in Definition 1.

Then, for all k ≥ 0, the conditional distribution of (Yk, Xk+1) given Fk only depends
on

(2.5) Zk =
(
X(k−p+1):k, U(k−q+1):(k−1)

)
∈ Z ,

where we defined

(2.6) Z = Xp ×Uq−1 endowed with the σ-field Z = X⊗p ⊗ U⊗(q−1).

For any probability distribution ξ on (Z,Z), we denote by Pθ
ξ the distribution of

{Xk, Yk′ : k > −p, k′ > −q} satisfying (2.1) with Z0 ∼ ξ, with the usual notation
Pθ
z in the case where ξ is a Dirac mass at z ∈ Z.

The inference about the model parameter is classically performed by relying
on the likelihood of the observations (Y0, . . . , Yn) given Z0. For all z ∈ Z, the
corresponding conditional density function pθ(y0:n|z) with respect to ν⊗n under
parameter θ ∈ Θ is given by

(2.7) y0:n 7→
n∏

k=0

gθ (xk; yk) ,

where the sequence x0:n is defined through the initial conditions and recursion
equations





xk = Πp+k (z) , −p < k ≤ 0 ,

uk = Πp+q+k (z) , −q < k ≤ −1 ,

uk = Υ(yk) , 0 ≤ k < n ,

xk = ψ̃θ
u(k−q):(k−1)

(
x(k−p):(k−1)

)
, 1 ≤ k ≤ n ,

(2.8)

where, throughout the paper, for all j ∈ {1, . . . , p + q − 1}, we denote by Πj (z)
the j-th entry of z ∈ Z. Note that xk+1 only depends on z and y0:k for all k ≥ 0.
Throughout the paper, we use the notation : for all n ≥ 1, y0:n−1 ∈ Yn and z ∈ Z,

ψθ〈y0:(n−1)〉(z) := xn , with xn defined by (2.8)(2.9)

Note that for n = −1, y0:−1 is the empty sequence and (2.9) is replaced by
ψθ〈∅〉(z) = x0 = Πp (z). Given the initial condition Z0 = z(i), the (conditional)
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maximum likelihood estimator θ̂z(i),n of the parameter θ is thus defined by

(2.10) θ̂z(i),n ∈ argmax
θ∈Θ

Lθz(i),n,

where, for all z(i) ∈ Z,

(2.11) Lθ
z(i),n

:=
n∑

k=0

ln gθ
(
ψθ〈Y0:(k−1)〉(z(i));Yk

)
.

Note that since {Xn : n ∈ Z} is unobserved, to compute the conditional likelihood,
we used some arbitrary initial values for X(−p+1):0, (the first p entries of z(i)), and
that for convenience we also replace Y(−p+1):−1 by some arbitrary values (the last

q−1 entries of z(i)) and index our set of observations as Y0:n (hence assuming 1+n
“true” observations). The iterated function ψθ〈Y0:k〉 can be cumbersome but is very
easy to compute in practice using the recursion (2.8). Moreover, the same kind of
recursion holds for its derivatives with respect to θ, allowing one to apply gradient
steps to locally maximize the likelihood.

In this contribution, we investigate the convergence of θ̂z(i),n as n→ ∞ for some

(well-chosen) value of z(i) under the assumption that the model is well specified
and the observations are in the steady state. The first problem to solve in this line
of results is thus to show the following.

(A-1) For all θ ∈ Θ, there exists a unique stationary solution satisfying (2.1).

This ergodic property is the cornerstone for making statistical inference theory
work and we provide simple general conditions in Section 3.2. We now introduce
the notation that will allow us to refer to the stationary distribution of the model
throughout the paper.

Definition 3. If (A-1) holds, then

a) Pθ denotes the distribution on ((X × Y)Z, (X × Y)⊗Z) of the stationary
solution of (2.1) extended on k ∈ Z, with Fk = σ(X−∞:k, Y−∞:(k−1));

b) P̃θ denotes the projection of Pθ on the component YZ.

We also use the symbols Eθ and Ẽθ to denote the expectations corresponding to Pθ

and P̃θ, respectively. We further denote by πθ
X
and πθ

Y
the marginal distributions of

X0 and Y0 under Pθ, on (X,X ) and (Y,Y), respectively. Moreover, for all θ, θ′ ∈ Θ,

we write θ ∼ θ′ if and only if P̃θ = P̃
θ′

. This defines an equivalence relation on
the parameter set Θ and the corresponding equivalence class of θ is denoted by
[θ] := {θ′ ∈ Θ : θ ∼ θ′}.

The equivalence relationship ∼ was introduced by [29] as an alternative to the

classical identifiability condition. Namely, we say that θ̂z(i),n is equivalence-class
consistent at the true parameter θ⋆ if

(2.12) lim
n→∞

∆(θ̂z(i),n, [θ⋆]) = 0, P̃
θ⋆-a.s.

Identifiabity can then be treated as a separate problem which consists in determin-
ing all the parameters θ⋆ for which [θ⋆] is reduced to the singleton {θ⋆}, so that
equivalence-class consistency becomes the usual consistency at and only at these
parameters. The identifibility problem is treated in [15] for general order ODMs.
In the case of an LODM, for θ⋆ = (ϑ∗, ϕ∗) with ϑ∗ = (ω∗, a⋆1:p, b

⋆
1:q), the following

conditions for having [θ⋆] = {θ⋆} are derived and will also be useful hereafter.
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(I-1) For all θ = (ϑ, ϕ) ∈ Θ with ϑ = (ω, a1:p, b1:q), we have a1:p ∈ Sp.
(I-2) The polynomials Pp(·; a⋆1:p) and Qq(·; b⋆1:q) have no common complex roots.

In these assumptions, we used the following definitions:

Sp =

{
c1:p ∈ R

p : ∀z ∈ C, |z| ≤ 1 implies 1−
p∑

k=1

ckz
k 6= 0

}
,(2.13)

Pp(z; a1:p) = zp −
p∑

k=1

akz
p−k and Qq(z; b1:q) =

q−1∑

k=0

bk+1 z
q−1−k .

Condition (I-1) is often referred to as the invertibility condition, see [38].
As a byproduct of the proof of (A-1), one usually obtains a function VX : X → R+

of interest, common to all θ ∈ Θ, such that the following property holds on the
stationary distribution (see Section 3.2).

(A-2) For all θ ∈ Θ, πθ
X
(VX) <∞.

It is here stated as an assumption for convenience. Note also that, in the following,
for V : X → R+ and f : X → R+, we denote the V -norm of f by

|f |V = sup

{ |f(x)|
V (x)

: x ∈ X

}
,

with the convention 0/0 = 0 and we write f . V if |f |V < ∞. With this notation,
under (A-2), for any f : X → R such that f . VX, π

θ
X
(|f |) < ∞ holds, and

similarly, since πθ
Y
= πθ

X
Gθ as a consequence of (2.1), for any f : Y → R such that

Gθ(|f |) . VX, we have πθ
Y
(|f |) <∞.

2.2. Two examples. To motivate our general results we first explicit two models of
interest, namely, the log-linear Poisson GARCH(p, q) and the NBIN-GARCH(p, q)
models. To the best of our knowledge, the stationarity and ergodicity as well as the
asymptotic properties of the MLE for the general log-linear Poisson GARCH(p, q)
and NBIN-GARCH(p, q) models have not been derived so far. Formally, our first
example is the following.

Example 1. The Log-linear Poisson GARCH(p, q) Model is an LODM(p, q) pa-
rameterized by θ = (ω, a1:p, b1:q) ∈ Θ ⊂ Rp+q+1 with observations space Y = Z+

and hidden variables space X = R, and with admissible mapping Υ(y) = ln(1 + y),
and G(x, ·) is the Poisson distribution with mean ex, that is, ν is the counting
measure on Z+ and gθ(x; y) = ex y−ex/(y!).

Our next example is the NBIN-GARCH(p, q).

Example 2. The NBIN-GARCH(p, q) model is an LODM(p, q) parameterized by

θ = (ω, a1:p, b1:q, r) ∈ Θ ⊂ R∗
+ × R

p+q
+ × R∗

+ with observations space Y = Z+ and
hidden variables space X = R+, and with admissible mapping Υ(y) = y, and G(x, ·)
is the the negative binomial distribution with shape parameter r > 0 and mean r x,
that is, ν is the counting measure on Z+ and

(2.14) gθ(x; y) =
Γ(r + y)

y ! Γ(r)

(
1

1 + x

)r (
x

1 + x

)y

.

Our condition for showing the ergodicity of general order log-linear Poisson
GARCH models requires the following definition. For all x = x(1−(p∨q)):0 ∈ R

p∨q,
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m ∈ Z+, and w = w(−q+1):m ∈ {0, 1}q+m, define ψ̂θ〈w〉(x) as xm+1 obtained by
the recursion

(2.15) xk =

p∑

j=1

aj xk−j +

q∑

j=1

bj wk−j xk−j , 1 ≤ k ≤ m+ 1

We can now state our result on general order log-linear Poisson GARCH models.

Theorem 4. Consider the log-linear Poisson GARCH(p, q) model, which satisfies
Eq. (2.1) under the setting of Example 1. Suppose that, for all θ ∈ Θ, we have

(2.16) lim
m→∞

max
{∣∣∣ψ̂θ〈w〉(x)

∣∣∣ : w ∈ {0, 1}q+m
}
= 0 for all x ∈ R

p∨q .

Then we have the following.

(i) For all θ ∈ Θ, there exists a unique stationary solution {(Xk, Yk) : k ∈ Z+}
to (2.1), that is, (A-1) holds. Moreover, for any τ > 0, (A-2) holds with
VX : R → R+ defined by

(2.17) VX(x) = eτ |x|, x ∈ R.

(ii) Let θ⋆ ∈ Θ. For any x
(i)
1 ∈ R and y

(i)
1 ∈ Z+, setting z(i) =

(x
(i)
1 , . . . , x

(i)
1 ,Υ(y

(i)
1 ), · · · ,Υ(y

(i)
1 )) ∈ Rp × Rq−1, the MLE θ̂z(i),n as defined

by (2.10) is equivalence-class consistent.
(iii) If the true parameter θ⋆ = (ω⋆, a⋆1:p, b

⋆
1:q) moreover satisfies (I-2), then the

MLE θ̂z(i),n is consistent.

The proof is postponed to Section 4.5.

Remark 2. Let us provide some insights about Condition (2.16).

(1) Using the two possible constant sequences w, wk = 0 for all k or wk = 1
for all k in (2.15), we easily see that (2.16) implies

a1:p ∈ Sp and a1:(p∨q) + b1:(p∨q) ∈ Sp∨q ,

where we used the usual convention ak = 0 for p < k ≤ q and bk = 0 for
q < k ≤ p.

(2) A sufficient condition to have (2.16) is

(2.18) sup
{∣∣∣ψ̂θ〈w〉(x)

∣∣∣ : w ∈ {0, 1}q, x ∈ [−1, 1]p∨q
}
< 1 .

Indeed, defining ρ as the left-hand side of the previous display, we clearly
have, for all m > p ∨ q, w ∈ {0, 1}q+m and x ∈ R

p∨q,
∣∣∣ψ̂θ〈w〉(x)

∣∣∣ ≤ ρ max
{∣∣∣ψ̂θ〈w′〉(x)

∣∣∣ : w′ ∈ {0, 1}q+m−j, 1 ≤ j ≤ p ∨ q
}
.

(3) The first iteration (2.15) implies, for all w ∈ {0, 1}q and x ∈ [−1, 1]p∨q,

|ψ̂θ〈w〉(x)| ≤
[
p∨q∑

k=1

(|ak| ∨ |ak + bk|)
]
.

Hence a sufficient condition to have (2.18) (and thus (2.16)) is

(2.19)

p∨q∑

k=1

(|ak| ∨ |ak + bk|) < 1 .
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(4) When p = q = 1, by Points (1) and (3) above, Condition (2.16) is equivalent
to have |a1| < 1 and |a1 + b1| < 1. This condition is weaker than the one
derived in [12] where |b1| < 1 is also imposed.

We now state our result for general order NBIN-GARCH model.

Theorem 5. Consider the NBIN-GARCH(p, q) model, which satisfies Eq. (2.1)
under the setting of Example 2. Suppose that, for all θ = (ω, a1:p, b1:q, r) ∈ Θ, we
have

(2.20)

p∑

k=1

ak + r

q∑

k=1

bk < 1.

Then the following assertions hold.

(i) For all θ ∈ Θ, there exists a unique stationary solution to (2.1), that
is, (A-1) holds. Moreover, (A-2) holds with VX(x) = x for all x ∈ R+.

(ii) Let θ⋆ ∈ Θ. For any x
(i)
1 ∈ R and y

(i)
1 ∈ Z+, setting z(i) =

(x
(i)
1 , . . . , x

(i)
1 , y

(i)
1 , · · · , y(i)1 ) ∈ R

p
+ × Z

q−1
+ , the MLE θ̂z(i),n as defined

by (2.10) is equivalence-class consistent.
(iii) If the true parameter θ⋆ = (ω⋆, a⋆1:p, b

⋆
1:q, r

⋆) moreover satisfies Condi-

tion (I-2), then the MLE θ̂z(i),n is consistent.

The proof is postponed to Section 4.6.

Remark 3. Clearly, under the setting of Example 2, if Eq. (2.1) has a stationary
solution such that µ =

∫
xπX(dx) < ∞, taking the expectation on both sides of

the second equation in (2.1) and using that
∫
y πY(dy) = r

∫
xπX(dx), then (2.20)

must hold, in which case we get

µ =

(
1−

p∑

k=1

ak + r

q∑

k=1

bk

)−1

.

Hence (2.20) is in fact necessary and sufficient to get a stationary solution admitting
a finite first moment, as was already observed in [45, Theorem 1] although the
ergodicity is not proven in this reference. However, we believe that, similarly to the
classical GARCH(p, q) processes, we can find stationary solutions to Eq. (2.1) in
the case where (2.20) does not hold. This is left for future work.

Remark 4. The consistency of the MLE in Theorems 4 and 5 paves the way for
investigating its asymptotic normality. This is done for these two examples in [37,
Proposition 5.4.7(iii) and Proposition 5.4.15].

3. General Results

3.1. Preliminaries. In the well-specified setting, a general result on the consis-
tency of the MLE for a class of first-order ODMs has been obtained in [12]. Let us

briefly describe the approach used to establish the convergence of the MLE θ̂z(i),n

in this reference and in the present contribution for higher order ODMs. Let θ⋆ ∈ Θ
denote the true parameter. The consistency of the MLE is obtained through the
following steps.

Step 1 Find sufficient conditions for the ergodic property (A-1) of the model.

Then the convergence of the MLE to θ⋆ is studied under P̃θ⋆ as defined
in Definition 3.
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Step 2 Establish that, as the number of observations n→ ∞, the normalized log-
likelihood Lθ

z(i),n
as defined in (2.11), for some well-chosen z(i) ∈ Xp, can be

approximated by

n−1
n∑

k=1

ln pθ(Yk|Y−∞:k−1),

where pθ(·|·) is a P̃θ⋆-a.s. finite real-valued measurable function defined on
(YZ,Y⊗Z). To define pθ(·|·), we set, for all y−∞:0 ∈ YZ− and y ∈ Y, whenever
the following limit is well defined,

(3.1) pθ (y | y−∞:0) = lim
m→∞

gθ
(
ψθ〈y−m:0〉(z(i)); y

)
.

Step 3 By (A-1), the observed process {Yk : k ∈ Z} is ergodic under P̃
θ⋆ and

provided that

Ẽ
θ⋆
[
ln+ pθ(Y1|Y−∞:0)

]
<∞,

it then follows that

lim
n→∞

Lθz(i),n = Ẽ
θ⋆
[
ln pθ(Y1|Y−∞:0)

]
, P̃

θ⋆-a.s.

Step 4 Using an additional argument (similar to that in [34]), deduce that the

MLE θ̂z(i),n defined by (2.10) eventually lies in any given neighborhood of
the set

(3.2) Θ⋆ = argmax
θ∈Θ

Ẽ
θ⋆
[
ln pθ(Y1|Y−∞:0)

]
,

which only depends on θ⋆, establishing that

(3.3) lim
n→∞

∆(θ̂z(i),n,Θ⋆) = 0, P̃
θ⋆ -a.s.,

where ∆ is the metric endowing the parameter space Θ.
Step 5 Establish that Θ⋆ defined in (3.2) reduces to the equivalent class [θ⋆] of

Definition 3. The convergence (3.3) is then called the equivalence class con-
sistency of the MLE.

Step 6 Establish that [θ⋆] reduces to the singleton {θ⋆}. The convergence (3.3) is
then called the strong consistency of the MLE.

In [14], we provided easy-to-check conditions on first order ODMs for obtaining
Step 1 to Step 4. See [14, Theorem 2] for Step 1, and [14, Theorem 1] for the
following steps. In [13], we proved a general result for partially observed Markov
chains, which include first order ODMs, in order to get Step 5, see Theorem 1 in
this reference. Finally Step 6 is often carried out using particular means adapted
to the precise considered model.

We present in Section 3.2 our conditions from achieving ergodicity (Step 1) and,
in Section 3.3, we adapt the conditions already used in [14, 13] to carry out Step 2
to Step 5 for first order model to higher order ODMs.

Using the embedding described in Section 4.1, all the steps from Step 1 to
Step 5 can in principle be obtained by applying the existing results to the first
order ODMs in which the original higher order model is embedded. This approach
is indeed successful, up to some straightforward adaptation, for Step 2 to Step 5.
Ergodicity in Step 1 requires a deeper analysis that constitutes the main part of
this contribution. As for Step 6, it is treated in [15].
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3.2. Ergodicity. In this section, we provide conditions that yield stationarity and
ergodicity of the Markov chain {(Zk, Yk) : k ∈ Z+}, that is, we check (A-1)
and (A-2). We will set θ to be an arbitrary value in Θ and since this is a “for
all θ (...)” condition, to save space and alleviate the notational burden, we will
drop the superscript θ from, for example, Gθ and ψθ and respectively write G and
ψ, instead.

Ergodicity of Markov chains are usually studied using ϕ-irreducibility. This ap-
proach is well known to be quite efficient when dealing with fully dominated models;
see [32]. It is not at all the same picture for integer-valued observation-driven mod-
els, where other tools need to be invoked; see [18, 12, 14] for ODMs(1,1). Here we
extend these results for general order ODMs(p, q). Let us now introduce our list of
assumptions. They will be further commented hereafter.

We need some metric on the space Z and assume the following.

(A-3) The σ-fields X and U are Borel ones, respectively associated to (X, δX) and
(U, δU), both assumed to be complete and separable metric spaces.

Recall that any finite Y-valued sequence y, ψθ〈y〉 is defined by (2.9) with the re-
cursion (2.8). Define, for all n ∈ Z

∗
+, the Lipschitz constant for ψθ〈y〉, uniform over

y ∈ Yn,

(3.4) Lipθn = sup

{
δX(ψ

θ〈y〉(z), ψθ〈y〉(z′))
δZ(z, z′)

: (z, z′, y) ∈ Z2 × Yn

}
,

where we set, for all v ∈ Z2,

(3.5) δZ(v) =

(
max
1≤k≤p

δX ◦Π⊗2
k (v)

) ∨ (
max

p<k<p+q
δU ◦Π⊗2

k (v)

)
.

We use the following assumption on the link function.

(A-4) For all θ ∈ Θ, we have Lipθ
1 <∞ and Lipθn → 0 as n→ ∞.

The following assumption is mainly related to the observation kernel G. It partly
relies on the iterates of the link functions defined in (2.9), but expressed using
u0:(n−1) instead of y0:(n−1). Namely, notice that xn in (2.8) can also be defined as
a measurable function of z and u0:(n−1), hence we can define

ψ̃θ〈u0:(n−1)〉(z) := xn , with u0:(n−1), xn defined by (2.8)(3.6)

so that ψθ〈y0:(n−1)〉(z) = ψ̃θ〈Υ⊗n(y0:(n−1))〉(z) for all z ∈ Z and y0:(n−1) ∈ Yn. The
assumption on G reads as follows.

(A-5) The space (X, δX) is locally compact and if q > 1, so is (U, δU). For all x ∈ X,
there exists δ > 0 such that

(3.7)

∫
sup {g(x′, y) : δX(x′, x) < δ} ν(dy) <∞ .

Moreover, one of the two following assertions hold.
(a) The kernel G is strong Feller.

(b) The kernel G is weak Feller and the function u 7→ ψ̃〈u〉(z) defined in (3.6)
is continuous on U for all z ∈ Z.

Next, we consider a classical drift condition used for showing the existence of an
invariant probability distribution.
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(A-6) There exist measurable functions VX : X → R+ and VU : U → R+ such that,
setting VY = VU ◦ Υ, GVY . VX, {VX ≤ M} is compact for any M > 0, and
so is {VY ≤M} if q > 1, and

(3.8) lim
n→∞

lim
M→∞

sup
z∈Z

Ez [VX(Xn)]

M + V (z)
= 0 ,

where we defined

(3.9) V (z) = max
1≤k≤p

p<ℓ<p+q

{
VX(Πk (z)),

VU(Πℓ (z))

|GVY|VX

}
.

The following condition is used to show the existence of a reachable point.

(A-7) One of the two following assertions hold.
(a) There exists y0 ∈ Y such that ν({y0}) > 0.

(b) The function (x, y) 7→ ψ̃y(x) is continuous on Xp × Yq.

The last assumption is used to show the uniqueness of the invariant probability
measure, through a coupling argument. It requires the following definition, used

in a coupling argument. For any initial distribution ξ on (Z2,Z⊗2), let Êξ denote
the expectation (operator) assoiciated to the distribution of {Xk, X

′
k, Yk′ , Y ′

k′ : k >
−p, k′ > −q} satisfying (X(−p+1):0, Y(−q+1):−1, X

′
(−p+1):0, Y

′
(−q+1):−1) ∼ ξ and, for

all k ∈ Z+,

Yk|F ′
k ∼ G(φ(Xk, X

′
k), ·) and Y ′

k = Yk ,

Xk+1 = ψY(k−q+1):k
(X(k−p+1):k) ,

X ′
k+1 = ψY ′

(k−q+1):k
(X ′

(k−p+1):k) .

(3.10)

where F ′
k = σ

(
X(−p+1):k, Y

′
(−q+1):(k−1), X

′
(−p+1):k, Y(−q+1):(k−1)

)
.

(A-8) There exist measurable functions α : X2 → [0, 1], φ : X2 → X, a WX :
X2 → [1,∞) and WU : U → R+ such that, setting WY = WU ◦ Υ, we have
(GWY) ◦ φ .WX and the threee following assertions hold.
(i) For all (x, x′) ∈ X2 and y ∈ Y,

(3.11) min {g(x; y), g(x′; y)} ≥ α(x, x′)g (φ(x, x′); y) .

(ii) The function WX is symmetric on X2, WX(x, ·) is locally bounded for all
x ∈ X, and WU is locally bounded on U.

(iii) We have 1− α ≤ δX ×WX on X2.
And, defining, for all v = (z, z′) ∈ Z2,

(3.12) W (v) = max

{
WX ◦Π⊗2

k (v),
WU(Πℓ (z̃))

|GWY ◦ φ|WX

:
1≤k≤p
z̃∈{z,z′}
p<ℓ<p+q

}
,

one of the two following assertions holds.

(iv) lim
ζ→∞

lim sup
n→∞

1

n
ln sup

v∈Z2

Êv [WX(Xn, X
′
n)]

W ζ(v)
≤ 0.

(v) lim
n→∞

lim
M→∞

sup
v∈Z2

Êv [WX(Xn, X
′
n)]

M +W (z)
= 0 and, for all r = 1, 2, . . . , there

exists τ ≥ 1 such that sup
v∈Z2

Êv [WX(Xr, X
′
r)] /W

τ (v) <∞.

Remark 5. Let us comment briefly on these assumptions.
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(1) By [15, Remark 2], for an LODM(p, q) (A-4) is equivalent to (I-1).
(2) If q = 1, the terms depending on ℓ both in (3.9) and (3.12) vanish. We can

take VU =WU = 0 without loss of generality in this case.
(3) Recall that a kernel is strong (resp. weak) Feller if it maps any bounded

measurable (resp. bounded continuous) function to a bounded continuous
function. By Scheffé’s lemma, a sufficient condition for G to be weak Feller
is to have that x 7→ g(x; y) is continuous on X for all y ∈ Y. But then (3.7)
gives that G is also strong Feller by dominated convergence.

(4) Note that Condition (3.7) hold when G(x, ·) is taken among an exponential
family with natural parameter continuously depending on x and valued
within the open set of natural parameters, in which case G is also strong
Feller. We are in this situation for both Examples 1 and 2.

We can now state the main ergodicity result.

Theorem 6. Let Pz be defined as Pθ
z in Definition 1. Conditions (A-3),

(A-4), (A-5), (A-6), (A-7) and (A-8) imply that there exists a unique initial dis-
tribution π which makes Pπ shift invariant. Moreover it satisfies Eπ [VX(X0)] <∞.
Hence, provided that these assumptions hold at each θ ∈ Θ, they imply (A-1)
and (A-2).

For convenience, we postpone this proof to Section 4.3.
The following lemma provides a general way for constructing the instrumental

functions α and φ that appear in (A-8). The proof can be easily adapted from [14,
Lemma 1] and is thus omitted.

Lemma 7. Suppose that X = CS for some measurable space (S,S) and C ⊆ R. Thus
for all x ∈ X, we write x = (xs)s∈S, where xs ∈ C for all s ∈ S. Suppose moreover
that for all x = (xs)s∈S ∈ X, we can express the conditional density g(x; ·) as a
mixture of densities of the form j(xs)h(xs; ·) over s ∈ S. This means that for all
t ∈ C, y 7→ j(t)h(t; y) is a density with respect to ν and there exists a probability
measure µ on (S,S) such that

(3.13) g(x; y) =

∫

S

j(xs)h(xs; y)µ(ds), y ∈ Y .

We moreover assume that h takes nonnegative values and that one of the two fol-
lowing assumptions holds.

(H’-1) For all y ∈ Y, the function h(·; y) : t 7→ h(t; y) is nondecreasing.
(H’-2) For all y ∈ Y, the function h(·; y) : t 7→ h(t; y) is nonincreasing.

For all x, x′ ∈ XS, we denote x ∧ x′ := (xs ∧ x′s)s∈S and x ∨ x′ := (xs ∨ x′s)s∈S and
we define





α(x, x′) = inf
s∈S

{
j(xs ∨ x′s)
j(xs ∧ x′s)

}
and φ(x, x′) = x ∧ x′ under (H’-1);

α(x, x′) = inf
s∈S

{
j(xs ∧ x′s)
j(xs ∨ x′s)

}
and φ(x, x′) = x ∨ x′ under (H’-2).

Then α and φ defined above satisfy (A-8)(i).

3.3. Convergence of the MLE. Once the ergodicity of the model is established,
one can derive the asymptotic behavior of the MLE, provided some regularity
and moment condition holds for going through Step 2 to Step 5, as described



GENERAL-ORDER OBSERVATION-DRIVEN MODELS 13

in Section 3.1. These steps are carried out using [14, Theorem 1] and [13, Theo-
rem 3], written for general ODMs(1,1). The adaptation to higher order ODMs(p, q)
will follow easily from the embedding of Section 4.1. We consider the following
assumptions, the last of which uses VX as introduced in Definition 3 under As-
sumptions (A-1) and (A-2).

(B-1) For all y ∈ Y, the function (θ, x) 7→ gθ(x; y) is continuous on Θ × X.
(B-2) For all y ∈ Y, the function (θ, z) 7→ ψθ〈y〉(z) is continuous on Θ× Z.

(B-3) There exist x
(i)
1 ∈ X, y

(i)
1 ∈ Y, a closed set X1 ⊆ X, C ≥ 0 and a measurable

function φ̄ : Y → R+ such that the following assertions hold setting z(i) =

(x
(i)
1 , . . . , x

(i)
1 ,Υ(y

(i)
1 ), . . . ,Υ(y

(i)
1 )) ∈ Xp ×Υ(Y)p−1.

(i) For all θ ∈ Θ and (z, y) ∈ Z× Y, ψθ〈y〉(z) ∈ X1.

(ii) sup
(θ,x,y)∈Θ×X1×Y

gθ(x; y) <∞.

(iii) For all y ∈ Y and θ ∈ Θ, δX

(
x
(i)
1 , ψ

θ〈y〉(z(i))
)
∨ δU(Υ(y),Υ(y

(i)
1 )) ≤

φ̄(y).
(iv) For all θ ∈ Θ and (x, x′, y) ∈ X1 × X1 × Y,

(3.14)

∣∣∣∣ln
gθ(x; y)

gθ(x′; y)

∣∣∣∣ ≤ H(δX(x, x
′)) e

C
(
δX(x

(i)
1 ,x)∨δX(x

(i)
1 ,x′)

)

φ̄(y),

(v) H(u) = O(u) as u→ 0.
(vi) If C = 0, then, for all θ ∈ Θ, Gθ ln+ φ̄ . VX. Otherwise, for all θ ∈ Θ,

Gθφ̄ . VX.

Remark 6. If we consider an LODM as in Definition 1, Condition (B-2) is obvious
and (B-3) (iii) reduces to impose that φ̄(y) ≥ A + B |Υ(y)| for some non-negative

constants A and B only depending on x
(i)
1 and on (the compact set) Θ.

Remark 7. In the case where the observations are discrete, one usually take ν to be
the counting measure on the at most countable space Y. In this case, gθ(x; y) ∈ [0, 1]
for all θ, x and y and Condition (B-3)(ii) trivially holds whatever X1 is.

We have the following result, whose proof is postponed to Section 4.4.

Theorem 8. Consider an ODM(p, q) for some p, q ≥ 1 satisfying (A-4). As-

sume that (A-1), (A-2), (B-1), (B-2) and (B-3) hold. Then the MLE θ̂z(i),n defined
by (2.10) is equivalence-class consistent, that is, the convergence (2.12) holds for
any θ⋆ ∈ Θ.

4. Postponed Proofs

4.1. Embedding into an observation-driven model of order (1, 1). A sim-
plifying and unifying step is to embed the general order case into the order (1, 1)
by augmenting the state space. Consider an ODM as in Definition 1. For all y ∈ Y,
we define Ψθ

y : Z → Z by

Ψθ
y : z = z1:(p+q−1) 7→

{(
z2:p, ψ

θ〈y〉(z), z(p+2):(p+q−1),Υ(y)
)

if q > 1(
z2:p, ψ

θ〈y〉(z)
)

if q = 1 .
(4.1)

We further denote the successive composition of Ψθ
y0
, Ψθ

y1
, ..., and Ψθ

yk
by

(4.2) Ψθ〈y0:k〉 = Ψθ
yk

◦Ψθ
yk−1

◦ · · · ◦Ψθ
y0
.
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Note in particular that ψθ〈y0:k〉 defined by (2.9) with the recursion (2.8) can be
written as

(4.3) ψθ〈y0:k〉 = Πp ◦Ψθ〈y0:k〉 ,

Conversely, we have, for all k ≥ 0 and y0:k ∈ Yk+1,

(4.4) Ψθ〈y0:k〉(z) =
((
ψθ〈y0:j〉(z)

)
k−p<j≤k

, u(k−q+2):k

)
,

where we set uj = Πp+q+j (z) for −q < j ≤ −1 and uj = Υ(yj) for 0 ≤ j ≤ k
and use the convention ψθ〈y0:j〉(z) = Πp−j (z) for −p < j ≤ 0. By letting Zk =
(X(k−p+1):k, U(k−q+1):(k−1)) (see (2.5)), Model (2.1) can be rewritten as, for all
k ∈ Z+,

Yk | Fk ∼ Hθ(Zk; ·),
Zk+1 = Ψθ

Yk
(Zk),

(4.5)

where for all z = (z1:(p+q−1)) ∈ Z,

(4.6) Hθ(z; ·) := Gθ(Πp (z) ; ·) .

By this representation, the ODM(p, q) is thus embedded in an ODM(1, 1). This in
principle allows us to apply the same results obtained for the class of ODMs(1, 1) to
the broader class of ODMs(p, q). As an ODM(1, 1), the bivariate process {(Zk, Yk) :
k ∈ Z+} is a Markov chain on the space (Z× Y,Z ⊗ Y) with transition kernel Kθ

satisfying, for all (z, y) ∈ Z× Y, A ∈ Z and B ∈ Y,

(4.7) Kθ((z, y);A×B) =

∫
1A×B(Ψ

θ
y(z), y

′) Gθ(Πp (z) ; dy
′).

Remark 8. Note that (A-1) is equivalent to saying that the transition kernel Kθ

of the complete chain admits a unique invariant probability measure πθ on Z× Y.
Moreover the resulting πθ

X
and πθ

Y
can be obtained by projecting πθ on any of its X

component and any of its Y component, respectively.

Note also that, by itself, the process {Zk : k ∈ Z+} is a Markov chain on (Z,Z)
with transition kernel Rθ defined by setting, for all z ∈ Z and A ∈ Z,

(4.8) Rθ(z;A) =

∫
1A(Ψ

θ
y(z))H

θ(z; dy) =

∫
1A(Ψ

θ
y(z))G

θ(Πp (z) ; dy).

4.2. Some additional notation. We introduce some algebra notation that will
be used hereafter. The transpose of a matrix M is denoted by MT , the identity
matrix of order n by In (or simply I), the max norm of z ∈ Rp+q−1 by

|z|∞ = max {Πk (z) : 1 ≤ k ≤ p+ q − 1} .

We further write εj for the j-th canonical vector in Rp+q−1, 1 ≤ j < p + q, so
that Πj (z) = ε

T
j z. For given coefficients ω, a1, ..., ap, b1, ..., bq, we define the
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(p+ q − 1)-square matrix

A =




0 1 0 0 · · · 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0 0 · · · 0 0
ap ap−1 ap−2 ap−3 · · · a1 bq bq−1 · · · b3 b2
0 0 0 0 · · · 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0 0 · · · 0 0




,

and the (p+ q − 1)-dimensional vectors b and ω by

b = b1εp + εp+q−1,

ω = ωεp.

In the case q = 1, we adopt the following convention: A reduces to its top-left
p-square bloc and b reduces to b1εp. In particular, in the case p = q = 1, A, b and
ω reduce to A = a1, b = b1 and ω = ω, respectively.

We further denote by A⋆, b⋆ and ω⋆ the corresponding values of A, b and
ω at (ω, a1:p, b1:q) = (ω⋆, a⋆1:p, b

⋆
1:q), respectively. Recall the notation convention

θ = (ϑ, ϕ) with ϑ = (ω, a1:p, b1:q) in Definition 1. We use the corresponding one for
θ⋆: θ⋆ = (ϑ⋆, ϕ⋆) with ϑ⋆ = (ω⋆, a⋆1:p, b

⋆
1:q).

4.3. Proof of Theorem 6. The scheme of proof of this theorem is somewhat sim-
ilar to that of [14, Theorem 2] which is dedicated to the ergodicity of ODM(1,1)
processes. The main difference is that we need to rely on assumptions involving
iterates of kernels such as (E-2), (A-4) and (A-8)(iv) below, to be compared with
their counterparts (A-4), (A-7) and (A-8)(iv) in [14, Theorem 2]). Using the em-
bedding of Section 4.1, we will use the following conditions directly applying to the
kernel R of this embedding.

(E-1) The space (Z, δZ) is a locally compact and complete separable metric space.
(E-2) There exists a positive integer m such that the Markov kernel Rm is weak

Feller. Moreover, there exist (λ, β) ∈ (0, 1) × R+ and a measurable function
V : Z → R+ such that RmV ≤ λV + β and {V ≤ M} is a compact set for
any M > 0.

(E-3) The Markov kernel R admits a reachable point, that is, there exists z∞ ∈ Z
such that, for any z ∈ Z and any neighborhood N of z∞, Rm(z,N ) > 0 for
at least one positive integer m.

(E-4) There exists a Markov kernel R̄ on (Z2 × {0, 1},Z⊗2 ⊗ P({0, 1})), a Markov

kernel R̂ on (Z2,Z⊗2), measurable functions ᾱ : Z2 → [0, 1] and W : Z2 →
[1,∞) symmetric, and real numbers (D, ζ1, ζ2, ρ) ∈ (R+)

3 × (0, 1) such that
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for all v = (z, z′, u) ∈ X2 × {0, 1} and n ≥ 1,

1− ᾱ ≤ δZ ×W on Z2 ,(4.9)

∀z ∈ Z, ∃γ > 0, sup {W (z, z′) : δZ(z, z
′) < γ} <∞ ,(4.10)

{
R̄(v; · × Z× {0, 1}) = R(z, ·) and

R̄(v;Z× · × {0, 1}) = R(z′, ·) ,(4.11)

R̄(v; · × {1}) = ᾱ(z, z′) R̂((z, z′), ·) ,(4.12)

R̂n((z, z′); δZ) ≤ DρnδZ(z, z
′) ,(4.13)

R̂n((z, z′); δZ ×W ) ≤ Dρnδζ1
Z
(z, z′) W ζ2(z, z′) .(4.14)

Based on these conditions, we can rely on the two following results. The existence
of an invariant probability measure for R is given by the following result.

Lemma 9. Under (E-1) and (E-2), R admits an invariant distribution π; moreover,
πV <∞.

Proof. By [42, Theorem 2], Assumption (E-2) implies that the transition kernel
Rm admits an invariant probability distribution denoted hereafter by πm. Let π̃ be
defined by, for all A ∈ Z,

π̃(A) =
1

m

m∑

k=1

πmR
k(A).

Obviously, we have π̃R = π̃, which shows that R admits an invariant probability
distribution π̃. Now letM > 0. Then by Jensen’s inequality, we have for all n ∈ Z+,

π̃(V ∧M) = π̃Rnm(V ∧M) ≤ π̃((RnmV ) ∧M)

≤ λnπ̃(V ∧M) +
β

1− λ
∧M.

Letting n → ∞, we then obtain π̃(V ∧M) ≤ β
1−λ ∧M . Finally, by the monotone

convergence theorem, letting M → ∞, we get π̃V <∞. �

Proposition 10. Assume (E-1) (E-3) and (E-4). Then the Markov kernel R admits
at most one unique invariant probability measure.

Proof. This is extracted from the uniqueness part of the proof of [12, Theorem 6],
see their Section 3. Note that our Condition (E-3) corresponds to their condition
(A2) and our Condition (E-4) to their condition (A3) (their α, Q, Q̄ and Q♯ being

our ᾱ, R, R̄ and R̂). �

Hence it is now clear that the conclusion of Theorem 6 holds if we can apply
both Lemma 9 and Proposition 10. This is done according to the following succes-
sive steps.

Step 1 Under (A-3), the metric (3.5) makes (Z, δZ) locally compact, complete and
separable, hence (E-1) holds true.

Step 2 Prove (E-2): this is done in Lemma 11 using (A-3), (A-5), (A-6) and the fact
that, for all y ∈ Y, ψ〈y〉 is continuous on Z, as a consequence of Lip1 <∞
in (A-4).

Step 3 Prove (E-3): this is done in Lemma 12, using (A-3), (A-4) and (A-7).
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Step 4 Define ᾱ and prove (4.9) and (4.10) in (E-4) with W as in (3.12): this
directly follows from Conditions (A-8)(ii) and(A-8)(iii).

Step 5 Provide an explicit construction for R̄ and R̂ satisfying (4.11) and (4.12)
in (E-4): this is done in Lemma 13 using (A-8)(i);

Step 6 Finally, we need to establish the additional properties of this R̂ required
in (E-4), namely, (4.13) and (4.14). This will be done in the final part of
this section using the additional Lemma 14.

Let us start with Step 2.

Lemma 11. If for all y ∈ Y, ψ〈y〉 is continuous on Z, then (A-5) and (A-6)
imply (E-2).

Proof. We first show that R is weak Feller, hence Rm is too, for any m ≥ 1. Let
f : Z → R be continuous and bounded. For all z = (x(−p+1):0, u(−q+1):(−1)) ∈ Z,
Rf(z) is given by

Ez [f(Z1)] = Ez

[
f(x(−p+2):0, X1, u(−q+2):(−1),Υ(Y0))

]

=

∫
f(x(−p+2):0, ψ〈y〉(z), u(−q+2):(−1),Υ(y)) G(x0; dy) .

Let us define f̃ : Z× Y → R by setting, for y ∈ Y and z as above,

f̃(z, y) = f(x(−p+2):0, ψ〈y〉(z), u(−q+2):(−1),Υ(y)) .

Further define F̃ : Z× X → R by setting, for all z ∈ Z and x ∈ X,

F̃ (z, x) =

∫
f̃(z, y) G(x; dy) .

Hence, with these definitions, we have, for all z ∈ Z, Rf(z) = F̃ (z,Πp (z)), and

it is now sufficient to show that F̃ is continuous. We write, for all z, z′ ∈ Z and
x, x′ ∈ X, F̃ (z′, x′)− F̃ (z, x) = A(z, z′, x′) +B(z, x, x′) with

A(z, z′, x′) =

∫ (
f̃(z′, y)− f̃(z, y)

)
G(x′; dy)

B(z, x, x′) =

∫
f̃(z, y) (G(x′; dy)−G(x; dy)) .

Since z 7→ f̃(z, y) is continuous for all y, we have A(z, z′, x′) → 0 as (z′, x′) → (z, x)
by (3.7) and dominated convergence. We have B(z, x, x′) → 0 as x′ → x, as a

consequence of (A-5)(a) or of (A-5)(b). Hence F̃ is continuous and we have proved
that Rm is weak Feller for all m ∈ Z∗

+.
We now show that we can find m ∈ Z∗

+, λ ∈ (0, 1) and β > 0 such that RmV ≤
λV + β with V : Z → R+ defined by (3.9). We have, for all n ≥ q,

RnV (z) = Ez

[
max
0≤k<p

VX(Xn−k)
∨

max
1≤k<q

VU(Un−k)

|GVY|VX

]

≤
∑

0≤k<p

Ez [VX(Xn−k)] + |GVY|−1
VX

∑

1≤k<q

Ez [VY(Yn−k)]

≤ 2
∑

0≤k<p∨q

Ez [VX(Xn−k)] ,

where we used that VU(Un−k) = VU(Υ(Yn−k)) = VY(Yn−k) and Ez [VY(Yn−k)] =
Ez [GVY(Xn−k)] ≤ |GVY|VX

Ez [VX(Xn−k)], which is valid for n − k ≥ 0. Now,
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by (3.8), for any λ ∈ (0, 1), we can find m ∈ Z+ and M > 0 such that
Ez [VX(Xm−k)] ≤ λ(V (z) +M)/(2(p∨ q)) for 0 ≤ k < p∨ q. Hence RmV ≤ λV + β
for β =Mλ. �

We now proceed with Step 3.

Lemma 12. (A-3), (A-4) and (A-7) imply (E-3).

Proof. For any y ∈ Y and n ∈ Z+∪{∞}, we denote by cn(y) the constant sequence
with length n whose all entries are equal to y.

Let z, z′ in Z. Denote, for all n ∈ Z∗
+, x

(n) = ψθ〈cn(y0)〉(z) and x̃(n) =

ψθ〈cn(y0)〉(z′). Then, for all n ∈ Z∗
+,

δX(x
(n), x̃(n)) ≤ Lipθn δZ (z, z

′) ,(4.15)

δZ(x
(n+1), x(n)) ≤ Lipθn δZ

(
z,Ψθ

y0
(z)
)
.(4.16)

By Lemma 15, the right-hand side in (4.16) is decreasing geometrically fast and
x(n) converges to a point ψ∞(y0) which does not depend on z by (4.15). Set z∞ =
(ψ∞(y0), . . . , ψ∞(y0),Υ(y0), . . . ,Υ(y0)) ∈ Z. Then, by (4.4) and (3.5), for any δ > 0,
there exists m ∈ Z∗

+ such that δZ(z∞,Ψ
θ〈cm(y0)〉(z)) < δ and thus

Rm (z; {z : δZ(z∞, z) < δ}) ≥ Pz(Zm = Ψθ〈cm(y0)〉(z))
≥ Pz(Yk = y0, ∀k ∈ {1, . . . ,m})

=

m∏

k=1

Gθ
(
ψθ〈ck(y0)〉(z); {y0}

)
.

If (A-7) (a) holds, then (2.3) implies Gθ(x; {y0}) > 0 for all x ∈ X, and we conclude
that z∞ is a reachable point.

If we now assume (A-7)(b), we then have that y 7→ Ψθ〈cm(y)〉(z) is continuous
on Y (by (4.1) and (4.2)) and thus there exists δ′ > 0 such that, for all y such that
δU(Υ(y),Υ(y0)) < δ′, δZ(z∞,Ψ

θ〈cm(y)〉(z)) < 2δ, and thus

Rm+1 (z; {z : δZ(z∞, z) < 2δ}) ≥ Pz(δU(Υ(Yk),Υ(y0)) < δ′, 1 ≤ k ≤ m) .

Choose now y0 such that ν({y : δU(Υ(y),Υ(y0)) < δ′}) > 0 (there must be such
a y0 since U is separable by (A-3)) so that (2.3) implies Pz(δU(Υ(Yℓ),Υ(y0)) <
δ′|Fℓ) = Gθ(Xℓ; {y : δU(Υ(y),Υ(y0)) < δ′}) > 0 Pz-a.s. for all k ≥ 1. It follows
that for all ℓ = m,m− 1, . . . , 1, conditioning on Fℓ, Pz(δU(Υ(Yk),Υ(y0)) < δ′, 1 ≤
k ≤ ℓ) = 0 implies Pz(δU(Υ(Yk),Υ(y0)) < δ′, 1 ≤ k ≤ ℓ− 1) = 0. We conclude
that Rm+1 (z; {z : δZ(z∞, z) < 2δ}) > 0 and z∞ is a reachable point. �

We now proceed with Step 4. Let us define ᾱ = α ◦ Π⊗2
p . By (3.5) and (3.12),

we have W ≥ WX ◦ Π⊗2
p and δZ ≥ δX ◦ Π⊗2

p . Hence (4.9) follows from (A-8)(iii).
Condition (4.10) directly follows from (A-8)(ii) and the definition of W in (3.12).

We now proceed with Step 5.

Lemma 13. Let α : X2 → [0, 1] and φ : X2 → X be measurable functions satisfy-

ing (A-8)(i) and define the Markov kernel R̂ on (Z2,Z⊗2) by

(4.17) R̂f(v) =

∫

Y

f ◦Ψ⊗2
y (v) G

(
φ ◦Π⊗2

p (v); dy
)
.

Then one can define a Markov kernel R̄ on (Z2 × {0, 1},Z⊗2 ⊗ P({0, 1})) which
satisfies (4.11) and (4.12).
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Proof. We first define a probability kernel H̄ from Z2 to Y⊗2⊗P({0, 1}) Let (z, z′) ∈
Z2 and set x = Πp (z) and x

′ = Πp (z
′). We define H̄((z, z′); ·) as the distribution

of (Y, Y ′, ǫ) drawn as follows. We first draw a random variable Ȳ taking values in
Y with distribution G(φ(x, x′); ·). Then we define (Y, Y ′, ǫ) by separating the two
cases, α(x, x′) = 1 and α(x, x′) < 1.

- Suppose first that α(x, x′) = 1. Then by (A-8)(i), we have G(x; ·) =
G(x′; ·) = G(φ(x, x′); ·). In this case, we set (Y, Y ′, ǫ) = (Ȳ , Ȳ , 1).

- Suppose now that α(z, z′) < 1. Then, using (3.11), the func-
tions (1 − α(x, x′))−1 [g(x; ·)− α(x, x′)g(φ(x, x′); ·)] and (1 −
α(x, x′))−1 [g(x′; ·)− α(x, x′)g(φ(x, x′); ·)] are probability density functions
with respect to ν and we draw Λ and Λ′ according to these two density
functions, respectively. We then draw ǫ in {0, 1} with mean α(x, x′) and,
assuming Ȳ , Λ, Λ′ and ǫ to be independent, we set

(Y, Y ′) =

{
(Ȳ , Ȳ ) if ǫ = 1,

(Λ,Λ′) if ǫ = 0.

One can easily check that the kernel H̄ satisfies the following marginal conditions,
for all (z, z′) ∈ Z2 and B ∈ Y,

(4.18)

{
H̄((z, z′);B × Y × {0, 1}) = H(z;B) = G(Πp (z) ;B) ,

H̄((z, z′);Y ×B × {0, 1}) = H(z′;B) = G(Πp (z
′) ;B),

Define the Markov kernel R̄ on (Z2 × {0, 1},Z⊗2 ⊗ P({0, 1})) by setting for all
(z, z′, u) ∈ Z2 × {0, 1} and A ∈ Z⊗2 ⊗ P({0, 1}),

R̄((z, z′, u);A) =

∫
1A (Ψy(z),Ψy′(z′), u1) H̄((z, z′); dy dy′ du1).

Then (4.18) and (4.8) immediately gives (4.11). To conclude the proof we
check (4.12). We have, for all v = (z, z′, u) ∈ Z2 × {0, 1} and A ∈ Z⊗2,

R̄(v;A× {1}) = E
[
1A

(
Ψy(Ȳ ),Ψy′(Ȳ )

)
1{ǫ=1}

]
,

where Ȳ and ǫ are independent and distributed according to G(φ◦Π⊗2
p (z, z′); ·) and

a Bernoulli distribution with mean ᾱ(z, z′). This, and the definition of R̂ in (4.17)
lead to (4.12). �

In order to achieve Step 6, we rely on the following result which is an adaption
of [12, Lemma 9].

Lemma 14. Assume that there exists (̺,D1, ℓ) ∈ (0, 1) × R+ × Z
∗
+ such that for

all (z, z′) ∈ Z2,

R̂ ((z, z′); {δZ ≤ D1δZ(z, z
′)}) = 1,(4.19)

R̂ℓ ((z, z′); {δZ ≤ ̺δZ(z, z
′)}) = 1,(4.20)

and that W : Z2 → R+ satisfies

lim
ζ→∞

lim sup
n→∞

1

n
ln sup

v∈Z2

R̂nW (v)

W ζ(v)
≤ 0 ,(4.21)

Then, (4.13) and (4.14) hold.
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Proof. Note that (4.19) implies, for any non-negative measurable function f on Z2,

R̂(δZ × f) ≤ D1

(
δZ × R̂f

)
and (4.20) implies R̂ℓ(δZ × f) ≤ ̺ (δZ × R̂ℓf). Hence

for all n ≥ 1, writing n = kℓ + r, where r ∈ {0, . . . , ℓ − 1} and k ∈ Z+, we get,
setting ρ′ = ̺1/ℓ,

R̂n(δZ × f) ≤ Dr
1 ̺

k
(
δZ × R̂nf

)
≤
(
1 ∨Dℓ−1

1

)
̺−1 ρ′ n

(
δZ × R̂nf

)
.

Taking f ≡ 1, we get (4.13) for any ρ ∈ [ρ′, 1). To obtain (4.14), we take f = W
and observe that (4.21) implies that, for any δ > 1, there exists ζ > 0 such that

sup(R̂nW/W ζ) = O(δn). Choosing δ small enough to make ρ′δ < 1, we get (4.14)
with ρ = ρ′δ, ζ1 = 1 and ζ2 = ζ. �

We finally conclude Step 6. By Lemma 14, it remains to check Conditions (4.19)

and (4.20), and (4.21). For all ℓ ≥ 1, we have R̂ℓ
(
v;
{
Ψ〈y1:ℓ〉⊗2(v) : y1:ℓ ∈ Yℓ

})
= 1.

Using (5.1), we thus get

R̂ℓ

(
v; δZ ≤ δZ(v)

(
1{ℓ<q} ∨ max

(ℓ−p)+<m≤ℓ
Lipm

))
= 1 ,

and (4.19) and (4.20) both follow from (A-4).
We now check (4.21). By (4.17) (3.10) and (3.12), for all n ≥ q and v ∈ Z2,

R̂nW (v) can be written as

R̂nW (v) = Êv

[
max
0≤k<p

WX(Xn−k, X
′
n−k)

∨
max
1≤k<q

WY(Yn−k) ∨WY(Y
′
n−k)

|GWY ◦ φ|WX

]

≤
∑

0≤k<p∨q

Êv

[
WX(Xn−k, X

′
n−k) +

WY(Yn−k) +WY(Y
′
n−k)

|GWY ◦ φ|WX

]

≤ 3
∑

0≤k<p∨q

Êv

[
WX(Xn−k, X

′
n−k)

]
,

where we used, for n − k ≥ 0, Êv [WY(Yn−k)] = Êv

[
WY(Y

′
n−k)

]
=

Êv

[
GWY ◦ φ(Xn−k, X

′
n−k)

]
. We directly get that (iv) implies (4.21). As for the

two conditions in (v), the first one implies that, for any ρ ∈ (0, 1), there exists

m > 0 and β > 0 such that R̂mW ≤ ρW + β , and the second one that there exists
τ ≥ 1 and C > 0 such that R̂rW ≤ CW τ for all r = 0, . . . ,m− 1. Combining the
two previous bounds, we obtain, for all n = mk + r with k ∈ Z+ and 0 ≤ r < m,

R̂nW ≤ ρkR̂rW + β/(1− ρ) ≤ ρk C W τ + β/(1 − ρ) ≤ CmW τ ,

where Cm is a positive constant, not depending on n. Hence we obtain (4.21) and
the proof is concluded.

4.4. Proof of Theorem 8. We apply [14, Theorem 1] to the embedded ODM(1,1)
with hidden variable space Z derived in Section 4.1. Note that our conditions (A-1)
and (A-2) yield their condition (A-1) and (A-2) on the embedded model with

V̄ (x) = max {VX(xk) : 1 ≤ k ≤ p} , x = x1:p ∈ Xp .

Let us briefly check that (B-2), (B-3) and (B-4) in [14] hold. Conditions (B-2)
and (B-3) correspond to our (B-1) and (B-2), noting, for the latter one, that ψθ

y

here corresponds to the Ψθ
y defined in (4.1), inherited from the embedding. As

for (B-4) in [14], we have that (B-4)(i) and (B-4)(ii) corresponds to our (B-3)(i)
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and (B-3)(ii), but with X1 in (B-4) replaced by Z1 = Xp−1 × X1 × Yq−1 with the
latter X1 as in (B-3). Also our condition (A-4), by Lemma 15 and (5.1) imply (B-
4)(iii) for some ̺ ∈ (0, 1) by setting ψ̄(z) = C δZ(z

(i), z) for some C > 0. This
ψ̄ is locally bounded, hence (B-4)(iv) holds. Condition (B-4)(v) follows (up to a
multiplicative constant) from (B-3)(iii) by observing that, z(i) has constant first p
entries and constant q − 1 last entries,

ψ̄(Ψθ
y(z

(i))) = C
(
δX(x

(i)
1 , ψ

θ〈y〉(z(i))) ∨ δU(Υ(y
(i)
1 ),Υ(y))

)
.

The remaining conditions (vi), (vii) and (viii) of (B-2) follow directly from (3.14),
(v) and (vi) in (B-3). All the conditions of [14, Theorem 1] are checked and this

result gives that, for all θ, θ⋆ ∈ Θ, P̃θ⋆-a.s., pθ(y|Y−∞:0) defined as in (3.1) is well
defined for all y ∈ Y, that, if θ = θ⋆, it is the density of Y1 given Y−∞:0 with respect

to ν, and also that the MLE θ̂z(i),n satisfies (3.3) with Θ⋆ defined by (3.2). Finally,
by [13, Theorem 3], we also obtain that Θ⋆ = [θ⋆] and the proof is concluded.

4.5. Proof of Theorem 4. We prove (i), (ii) and (iii) successively.

Proof of (i). We apply Theorem 6 with VX(x) = eτ |x| for some arbitrary τ > 0.
Note that Remark 2(1) give (I-1), which, by Remark 5(1), give (A-4). Remark 5(4)
gives (A-5), and (A-7)(a) is trivial in this example. Hence, it only remains to show
that (A-6), and (A-8) hold.

We start with (A-6), with VX(x) = eτ |x|. We can further set VU(u) = eτ |u|, hence
VY(y) = eτ | ln(1+y)| and, by Lemma 18, we then have GVY(x) ≤ 2e(1+x+)τ so that
|GVY|VX

≤ 2eτ . With these definitions, (3.9) leads to

(4.22) V (z) ≥ (2eτ )−1 eτ |z|∞ , z ∈ Z .

Now, to bound Ez[VX(Xn)] as n grows, we see VX(Xn) as e
τ |λ(Zn)| with the specific

λ = Πp and, for any linear form λ on Z, we look for a recursion relation applying
to

Ez

[
eτ |λ(Z1)|

]
= E

[
eτ |λ̃z(ln(1+V ))|] ,

where V ∼ P(eΠp(z)) and, for all z = (x(−p+1):0, y(−q+1):(−1)), λ̃z : R → R is defined
by

(4.23) λ̃z(y0) = λ(x(−p+2):0, ψ〈y0〉(z), y(−q+1):(−1), y0) .

Observing that λ̃z is an affine function, of the form λ̃z(y) = ϑ0 + ϑy, we can apply
Lemma 18 with ζ = x0 (and the trivial bound |ϑ0| ∨ |ϑ0 + ϑζ+| ≤ |ϑ0| ∨ |ϑ0 + ϑζ|)
and obtain that

Ez

[
eτ |λ(Z1)|

]
≤ c eτ(|λ◦Ψ̂〈0〉(z)|∨|λ◦Ψ̂〈1〉(z)|) ≤ c

[
eτ |λ◦Ψ̂〈0〉(z)| + eτ |λ◦Ψ̂〈1〉(z)|] ,

where we set c = 2eτω+b1 and, for w = 0, 1 and all z ∈ Z, Ψ̂〈w〉(z) is defined by

Ψ̂〈w〉(z) = (x(−p+2):0, x1, y(−q+2):−1, y0) with

x−p+k = Πk (z) for 1 ≤ k ≤ p ,

y−q+k = Πp+k (z) for 1 ≤ k < q ,

u0 = wx0 and u1−k = Υ(y1−k) for 1 < k < q ,

x1 =

p∑

k=1

ak x1−k +

q∑

k=1

bk uk .
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Defining for all w = w0:n−1 ∈ {0, 1}n, Ψ̂〈w〉 = Ψ̂〈wn−1〉 ◦ . . . Ψ̂〈w0〉, we get

(4.24) Ez [VX(Xn)] ≤ cn
∑

w∈{0,1}n

eτ |Πp◦Ψ̂〈w〉(z)| .

Now observe that, for all w = w0:n+q−1 ∈ {0, 1}n+q, we can define Πp ◦
Ψ̂〈w0:(n+q−1)〉(z) as xn+q obtained by adding to the previous recursive equations,
for 1 ≤ k < n+ q,

uk = wkxk and xk+1 =

p∑

j=1

aj xk+1−j +

q∑

j=1

bj uk+1−j .

Note that, in this recursion, we can replace uk+1−j by wk+1−jxk+1−j for k +
1 − j ≥ 0, hence xq:(n+q) satisfies the recursion (2.15) and it follows that

Πp ◦ Ψ̂〈w0:(n+q−1)〉(z) can be expressed as

ψ̂〈wq:(n+q−1)〉
((

Πp−(ℓ−q)+

(
Ψ̂〈w0:(q−ℓ)+〉(z)

))
1≤ℓ≤p∨q

)
.

Hence Condition (2.16) implies that, for all z ∈ Z,

lim
n→∞

sup
{∣∣∣Πp ◦ Ψ̂〈w〉(z)

∣∣∣ : w ∈ {0, 1}n
}
= 0 .

By linearity of z 7→ Ψ̂〈w〉(z), it follows that

(4.25) lim
n→∞

sup
{
|z|−1

∞

∣∣∣Πp ◦ Ψ̂〈w〉(z)
∣∣∣ : w ∈ {0, 1}n, z ∈ Z \ {0}

}
= 0 .

Hence using (4.24), we finally obtain for a positive sequence {ρn : n ∈ Z+},
Ez[VX(Xn)] ≤ (2c)n eτ ρn |z|∞ , with lim

n→∞
ρn = 0 ,

which, with (4.22), leads to, for all z ∈ Z and M > 0,

Ez [VX(Xn)]

M + V (z)
≤ (2c)n min

(
M−1 eτ ρn |z|∞ , (2eτ )

−1
eτ (ρn−1) |z|∞

)
.

Let C > 0 be arbitrarily chosen. Using the first term and the second term in this
min for |z|∞ ≤ C and |z|∞ > C respectively, we get that, for any n such that
ρn < 1,

lim sup
M→∞

sup
z∈Z

Ez [VX(Xn)]

M + V (z)
≤ (2c)n (2eτ )−1 eτ (ρn−1)C → 0 as C → ∞ .

Using that {ρn : n ∈ Z+} converges to 0, this holds for n large enough and we
get (3.8), and (A-6) holds.

We now turn to the proof of (A-8). We can apply Lemma 7 with C = R = X and
S = {1}, µ being the Dirac mass at point 1. For all (x, y) ∈ X× Y, let j(x) = e−ex

and h(x;u) = ex(eu−1)

(eu−1)! , which h satisfies (H’-1). Hence Lemma 7 gives that (A-8)(i)

holds with

α(x, x′) =
e−ex∨x′

e−ex∧x′ = e
−
∣∣∣ex−ex

′
∣∣∣

and φ(x, x′) = x ∧ x′ , x, x′ ∈ X .

Now for all x, x′ ∈ X, we have

1− α(x, x′) = 1− e
−
∣∣∣ex−ex

′
∣∣∣ ≤

∣∣∣ex − ex
′
∣∣∣ ≤ e|x|∨|x′| |x− x′| .
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We thus obtain (A-8)(iii) by setting WX(x, x
′) = e|x|∨|x′|, and (A-8)(ii) also follows

by settingWU(y) = e|y|. SinceWU is VU with τ = 1, we already saw that GWY(x) ≤
2e1+x+ , hence |WY ◦ φ|WX

≤ 2e, and (3.12) leads to, for all z, z′ in Z,

(4.26) W (z, z′) ≥ (2e)−1 e|z|∞∨|z′|∞ .

It now remains to prove either (A-8)(iv) or (A-8)(v), which both involve

Êz [WX(Xn, X
′
n)]. We proceed as previously when we bounded Ez

[
eτ |λ(Z1)|

]
. Let

τ ≥ 1. For any linear function λ : Z2 → Z2, we have, for all v = (z, z′) ∈ Z2,

Êv

[
eτ |λ(Z1)|∨|λ(Z′

1)|
]
≤ Êv

[
eτ |λ(Z1)|

]
+ Êz

[
eτ |λ(Z

′
1)|
]

= E

[
eτ |λ̃z(ln(1+V ))|]+ E

[
eτ |λ̃z′(ln(1+V ))|] ,

where V ∼ P(eφ◦Π
⊗2
p (v)) and λ̃z is defined by (4.23). By definition of φ above,

we have φ ◦ Π⊗2
p (v) ≤ Πp (z) ,Πp (z

′). Hence Lemma 18 with ζ = φ ◦ Π⊗2
p (v) and

ζ′ = Πp (z) and Πp (z
′) successively, we obtain, similarly as before for bounding

Ez

[
eτ |λ(Z1)|

]
, that for all v = (z, z′) ∈ Z2,

Êv

[
eτ(|λ(Z1)|∨|λ(Z′

1)|)
]
≤ c

∑

z′′=z,z′

∑

w=0,1

eτ |λ◦Ψ̂〈w〉(z′′)|

≤ 2c
∑

w=0,1

eτ(|λ◦Ψ̂〈w〉(z)|∨|λ◦Ψ̂〈w〉(z′)|) .(4.27)

Taking λ = Πp, and observing that Πp ◦ Ψ̂〈w〉 is a linear form for w = 0, 1, we get,

setting c0 = maxw=0,1 sup|z|∞≤1 |Πp ◦ Ψ̂〈w〉(z)|, for all v = (z, z′) ∈ Z2,

(4.28) Êv [W
τ
X (X1, X

′
1)] ≤ 4c eτ c0 |v|∞ with |v|∞ := |z|∞ ∨ |z′|∞ .

Thus, with (4.26), the second condition of (A-8)(v) holds with τ ′ = τ(c0 ∨ 1). To
conclude, it is now sufficient to show that the first condition of (A-8)(v) also holds.
Iterating (4.27) and taking τ = 1 and λ = Πp, we thus get, for all n ∈ Z+ and
v = (z, z′) ∈ Z2,

Êv [WX(Xn, X
′
n)] = Êv

[
e|λ(Zn)|∨|λ(Z′

n)|
]

≤ (4c)n max
{
e|Πp◦Ψ̂〈w〉(z)|∨|Πp◦Ψ̂〈w〉(z′)| : w ∈ {0, 1}n

}
.

Applying (4.25) and (4.26), we get that, for all v ∈ Z2,

Êv [WX(Xn, X
′
n)]

M +W (v)
≤ (4c)n min

{
eρn |v|∞

M
, (2e) e(ρn−1) |v|∞

}
,

where {ρn : n ∈ Z+} is a positive sequence converging to 0. We now proceed as for
proving (A-6) previously: the first term in the min tends to 0 as M → ∞ uniformly
over |v|∞ ≤ C for any C > 0, while, if ρn < 1, the second one tends to zero as
|v|∞ → ∞. Hence, for n large enough, we have

lim
M→∞

sup
v∈Z2

Êv [WX(Xn, X
′
n)]

M +W (v)
= 0 ,

and (A-8)(v) follows, which concludes the proof. �
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Proof of (ii). We apply Theorem 8. We have already shown that (A-4), (A-1)
and (A-2) hold in the proof of Assertion (i), with VX(x) = eτ |x| for any τ > 0.
Assumptions (B-1) and (B-2) obviously hold for the log-linear Poisson GARCH
model (see Remark 6 for the second one). It now only remains to show that, using
VX as above, (B-3) is also satisfied. We set X1 = X which trivially satisfies (B-3)(i).
Condition (B-3)(ii) is also immediate (see Remark 7). Next, we look for an adequate
φ̄, H and C ≥ 0 so that (iii) (iv) (v) and (vi) hold in (B-3). We have, for all θ ∈ Θ
and (x, x′, y) ∈ R2 × Z+,

∣∣ln gθ (x; y)− ln gθ (x′; y)
∣∣ ≤ |x− x′| ex∨x′

y

≤ |x− x′| e
∣∣∣x−x

(i)
1

∣∣∣∨
∣∣∣x′−x

(i)
1

∣∣∣
y ex

(i)
1 .

We thus set H(u) = ex
(i)
1 u, C = 1 and φ̄(y) = A + B y for some adequate non-

negative A and B so that (iii) (using Remark 6 and Υ(y) = ln(1 + y) ≤ y), (iv)
and (v) follow. Then we have Gθφ̄(x) ≤ A + B ex . VX, provided that we chose
τ ≥ 1. This gives (vi) and thus (B-3) holds true, which concludes the proof. �

Proof of (iii). We apply [15, Theorem 8] in which:

- Condition (A-1) corresponds to our assumption (A-1) shown in Point (i)
above;

- Condition (A-2) is readily checked for the Log Poisson Garch model;
- Condition (L-1) is the same as our Condition (I-1), which were already
proved for showing Point (i) above;

- Condition (L-2) is the same as our Condition (I-2) which holds by assump-
tion in (iii);

- Condition (3.11) corresponds to checking that

(4.29)

∫
ln+(ln(1 + y)) πθ

Y(dy) <∞ .

We already checked that GθVY . VX with VY(y) = (1 + y)τ , implying∫
(1 + y)τπθ

Y
(dy) <∞. Hence (4.29) holds.

Thus [15, Theorem 8] gives that [θ⋆] reduced to {θ⋆} and Assertion (iii) follows
from (ii). �

4.6. Proof of Theorem 5. We prove (i), (ii) and (iii) successively.

Proof of (i). As for the Log-linear Poisson Garch(p, q), we apply Theorem 6 this
time with VX(x) = x. Note that, since ak, bk ≥ 0 for all k, Condition (2.20) implies∑p

k=1 ak < 1, which implies (I-1) and thus (A-4) by Remark 5(1). Also as for the log-
linear Poisson Garch(p, q) case, Remark 5(4) gives (A-5), and (A-7)(a) is trivially
satisfied. Hence, again, we only have to show that (A-6), and (A-8) hold. Here Υ is
the identity mapping.

We start with (A-6), with VX(x) = x. We can further set VY(y) = y since, we
then have GVY(x) = rVX(x) so that |GVY|VX

= r. With these definitions, (3.9) leads
to

(4.30) V (z) ≥ (1 + r)
−1 |z|∞, z ∈ Z .

Note that VX(X1) = Πp (Z1), and for all linear function λ : Z → Z, we have, for all
z ∈ Z,

Ez[λ(Z1)] = λ (Ez [Z1]) = λ ◦ Ψ̂(z) ,
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where, z = (x(−p+1):0, y(−q+1):(−1)) ∈ Z,

Ψ̂(z) = (x(−p+2):0, ω +

p∑

k=1

ak x1−k +

q∑

k=2

bk y1−k + b1rx0, y(−q+2):(−1), rx0) .

Using the notation introduced in Section 4.2, this linear mapping exactly corre-
spond to the (p + q − 1)× (p + q − 1) matrix A + rbεTp . From Lemma 17, Condi-
tion (2.20) is equivalent to

(4.31) |λ|max(A+ rbεTp ) < 1,

where, for any square matrix M, |λ|max(M) denote the spectral radius of M. Thus
we get with (4.30), for all n ∈ Z+ and z ∈ Z,

Ez [Xn+1] = Πp (Ez[Zn+1]) = Πp ◦ (A+ rbεTp )
nz ≤ C ρn V (z) ,

where C > 0 and ρ < 1, and (A-6) is proved.
We conclude with the proof of (A-8). Let us apply Lemma 7 with C = (0,∞) = X

and S = {1}, µ being the Dirac mass at point 1, j(x) = (1 + x)−r and h(x; y) =
Γ(r+y)
y ! Γ(r)

(
x

1+x

)y
, which satisfies (H’-1). This leads to α and φ satisfying (A-8)(i) by

setting, for all x, x′ ∈ R+

α(x, x′) =

(
1 + x ∧ x′
1 + x ∨ x′

)r

and φ(x, x′) = x ∧ x′.

Next, for all (x, x′) ∈ Z2, we have

1− α(x, x′) = 1−
(
1 + x ∧ x′
1 + x ∨ x′

)r

≤ (1 ∨ r) |x− x′|

We thus obtain (A-8)(iii) by setting WX(x, x
′) = (1 ∨ r). All the other conditions

of (A-8) are trivially satisfied in this case, taking WU ≡ 1. �

Proof of (ii). We apply Theorem 8. We have already shown that (A-4), (A-1)
and (A-2) hold in the proof of Assertion (i), with VX(x) = x. Assumption (B-1)
follows from (2.14), and (B-2) from Remark 6. It now only remains to show that,
using VX as above, (B-3) is also satisfied.

Since Θ is compact, we can find ω and r such that ω ≥ ω and r ≤ r for
all θ = (ω, a1:p, b1:q, r) ∈ Θ. We set X1 = [ω,∞) which then satisfies (B-3)(i).
Condition (B-3)(ii) follows from Remark 7.

Next, we look for an adequate φ̄, H and C ≥ 0 so that (iii) (iv) (v) and (vi) hold
in (B-3). For all θ ∈ Θ, (x, x′) ∈ X1 and y ∈ Z+, we have

∣∣ln gθ(x; y)− ln gθ(x′; y)
∣∣ = |(r + y)[ln(1 + x′)− ln(1 + x)] + y[lnx− lnx′]|
≤
[
(r + y)(1 + ω)−1 + y ω−1

]
|x− x′|

≤
[
r + 2y ω−1

]
|x− x′| .

We set C = 0, H(s) = s and φ̄(y) = A+B y for some adequate non-negative A and
B so that (iii) (using Remark 6 and Υ(y) = y), (iv) and (v) follow. Then we have
Gθ ln+ φ̄(x) ≤ A + B r x . VX. This gives (vi) and thus (B-3) holds true, which
concludes the proof. �
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Proof of (iii). The proof of this point is similar to the proof of Theorem 4(iii) in
Section 4.5, except that Condition (4.29) is replaced by

(4.32)

∫
ln+(|y|) πθ

Y(dy) <∞ .

We already checked that GθVY . VX with VY(y) = y, implying
∫
y πθ

Y
(dy) < ∞.

Hence (4.32) holds and the proof is concluded. �

5. Useful lemmas

The following result is used in the proofs of Lemma 12 and Theorem 8.

Lemma 15. (A-4) implies that for all θ ∈ Θ, there exists C > 0 and ρ ∈ (0, 1)

such that Lipθn ≤ C ρn for all n ∈ Z∗
+.

Proof. By (3.4), (3.5) and (4.4), we have, for all n ∈ Z∗
+, using the convention

Lipθm = 1 for m ≤ 0,

(5.1) sup
y∈Yn,v∈Z2

δZ ◦Ψθ〈y〉⊗2(v)

δZ(v)
≤ 1{n<q} ∨

(
max
0≤j<p

Lipθ
n−j

)
.

Hence (A-4) implies that there exists m ≥ 1 and L ∈ (0, 1) such that, for all
y ∈ Ym+1, Ψθ〈y〉 is L-Lipschitz. Now observe that, by (4.3), for all n = km + r
with k ≥ 0 and 0 ≤ r < m, for all y = y−n:0 ∈ Yn+1, we can write Ψθ〈y〉 as

Ψθ〈y1−m:0〉 ◦Ψθ〈y1−2m:(−m)〉 ◦ · · · ◦Ψθ〈y(1−km):−(k−1)m〉 ◦Ψθ〈y−n:(−km)〉 ,
and in this composition, the k first functions are L-Lipschitz and the last one is

L′ = 1 ∨max
{
Lipθj : 0 < j ≤ m

}
-Lipschitz. Hence, for all z, z′ ∈ Z,

δX(ψ
θ〈y〉(z), ψθ〈y〉(z′)) ≤ δZ(Ψ

θ〈y〉(z),Ψθ〈y〉(z′)) ≤ L′ Lk
δZ(z, z

′) .

Hence the result by setting ρ = L1/m ∈ (0, 1). �

The following lemma is straightforward using standard algebra and is used nu-
merously in various particular cases. Its proof is omitted.

Lemma 16. The characteristic polynomial P of A+ rbεTp is given by

det
(
λI− (A+ rbεTp )

)
= λq−1

(
λp −

p∑

k=1

ak λ
p−k

)
− rλp−1

q∑

k=1

bkλ
q−k .

The following lemma is used in the proof of Theorem 5.

Lemma 17. Let p, q ≥ 1, (r, a1:p, b1:q) ∈ R
1+p+q
+ . Then Condition (2.20) is equiv-

alent to (4.31) and implies

(5.2) |λ|max(A) < 1 .

Proof. From Lemma 16, |λ|max(A + rbεTp ) < 1 is equivalent to have that for all
z ∈ C,

|z| ≥ 1 =⇒ zp+q−1 −
p∑

k=1

ak z
p+q−k−1 − r

q∑

k=1

bk z
p+q−k−1 6= 0 ,



GENERAL-ORDER OBSERVATION-DRIVEN MODELS 27

which can be rewritten as

(5.3) |z| ≤ 1 =⇒ 1−
p∑

k=1

ak z
k − r

q∑

k=1

bk z
k 6= 0 .

Setting ck = ak + r bk ≥ 0 for k = 1, . . . , p ∧ q, ck = ak if q < k ≤ p and ck = rbk
if p < k ≤ q, it only remains to show that this implication is equivalent to the
condition

∑p
i=1 ci < 1. If

∑p
k=1 ck < 1, then

|z| ≤ 1 =⇒
∣∣∣∣∣

p∨q∑

k=1

ckz
k

∣∣∣∣∣ ≤
p∨q∑

k=1

ck < 1 .

and (5.3) follows.
Note that z 7→ 1 −∑p∨q

k=1 ckz
k is mapping [0, 1] to [1 −∑p∨q

k=1 ck, 1]. Hence, if∑p∨q
k=1 ck ≥ 1, then [0, 1] ⊂ [1 −∑p∨q

k=1 ck, 1], and z 7→ 1 −∑p∨q
k=1 ckz

k must have a
zero in [0, 1], which contradicts the implication (5.3).

We thus have shown the equivalence between (2.20) and (4.31) in the case r = 1,
from which the general case r ≥ 0 immediately follows.

Now, since (2.20) obviously implies
∑p

k=1 ak < 1, which in turn is equivalent
to (5.2) (case r = 0), we also get the claimed implication. �

The following lemma is used in the proof of Theorem 4.

Lemma 18. Let ϑ ∈ R. Then, for all ϑ0 ∈ R and ζ ∈ R, if U ∼ P(eζ), then

E[(1 + U)ϑ] ≤ e(1+ζ+)ϑ+(5.4)

E[e|ϑ0+ϑ ln(1+U)|] ≤ 2eϑ+ e|ϑ0|∨|ϑ0+ϑ ζ+|(5.5)

≤ 2eϑ+ e|ϑ0|∨|ϑ0+ϑ ζ′
+| for all ζ′ ≥ ζ .(5.6)

Proof. We separate the proof of (5.4) in three different cases by specifying the
bound (5.4) in each case.

Case 1 For all ϑ ≤ 0, we have E[(1 + U)ϑ] ≤ 1.
Case 2 For all ϑ > 0 and ζ < 0, we have E[(1 + U)ϑ] ≤ eϑ.
Case 3 For all ϑ > 0 and ζ ≥ 0, we have E[(1 + U)ϑ] ≤ eϑ eζϑ.

The bound in Case 1 is obvious. The bound in Case 2 follows from

E[(1 + U)ϑ] ≤ E
[
eϑU

]
= ee

ζ(ϑ−1) .

Finally, the bound in Case 3 follows from the following inequalities, valid for all
ϑ > 0 and ζ ≥ 0,

E
[
e−ζϑ(1 + U)ϑ

]
≤ E

[(
1 + e−ζU

)ϑ] ≤ E

[
eϑe

−ζU
]
= ee

ζ(ϑe−ζ−1) ≤ eϑ .

Hence we get (5.4).
Let us now prove (5.5). Observe that

E[e|ϑ0+ϑ ln(1+U)|] ≤ E[eϑ0+ϑ ln(1+U)] + E[e−ϑ0−ϑ ln(1+U)]

= eϑ0E[(1 + U)ϑ] + e−ϑ0E[(1 + U)−ϑ] .

Then using (5.4), we get

E[e|ϑ0+ϑ ln(1+U)|] ≤ 2eϑ+ exp [(ϑ0 + (ζ+ϑ)+) ∨ (−ϑ0 + (ζ+ϑ)−)]

We conclude (5.5) and (5.6) by observing that, for all a, b ∈ R, (a+b+)∨(−a+b−) =
a ∨ (a+ b) ∨ (−a) ∨ (−a− b) = |a| ∨ |a+ b|. �
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Département CITI, CNRS UMR 5157, Télécom SudParis, 91000 Évry, France
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