Positivity of the time constant in a continuous model of first passage percolation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Positivity of the time constant in a continuous model of first passage percolation

Résumé

We consider a non trivial Boolean model $\Sigma$ on ${\mathbb R}^d$ for $d\geq 2$. For every $x,y \in {\mathbb R}^d$ we define $T(x,y)$ as the minimum time needed to travel from $x$ to $y$ by a traveler that walks at speed $1$ outside $\Sigma$ and at infinite speed inside $\Sigma$. By a standard application of Kingman sub-additive theorem, one easily shows that $T(0,x)$ behaves like $\mu \|x\|$ when $\|x\|$ goes to infinity, where $\mu$ is a constant named the time constant in classical first passage percolation. In this paper we investigate the positivity of $\mu$. More precisely, under an almost optimal moment assumption on the radii of the balls of the Boolean model, we prove that $\mu>0$ if and only if the intensity $\lambda$ of the Boolean model satisfies $\lambda < \widehat{\lambda}_c$, where $ \widehat{\lambda}_c$ is one of the classical critical parameters defined in continuum percolation.
Fichier principal
Vignette du fichier
PPPP.pdf (355.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01383426 , version 1 (18-10-2016)
hal-01383426 , version 2 (27-02-2017)

Identifiants

Citer

Jean-Baptiste Gouéré, Marie Théret. Positivity of the time constant in a continuous model of first passage percolation. 2016. ⟨hal-01383426v1⟩
403 Consultations
255 Téléchargements

Altmetric

Partager

More