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Positivity of the time constant in a continuous model
of first passage percolation

Jean-Baptiste Gouéré ∗and Marie Théret †

Abstract: We consider a non trivial Boolean model Σ on Rd for d ≥ 2. For every
x, y ∈ Rd we define T (x, y) as the minimum time needed to travel from x to y by a
traveler that walks at speed 1 outside Σ and at infinite speed inside Σ. By a standard
application of Kingman sub-additive theorem, one easily shows that T (0, x) behaves like
µ‖x‖ when ‖x‖ goes to infinity, where µ is a constant named the time constant in clas-
sical first passage percolation. In this paper we investigate the positivity of µ. More
precisely, under an almost optimal moment assumption on the radii of the balls of the
Boolean model, we prove that µ > 0 if and only if the intensity λ of the Boolean model
satisfies λ < λ̂c, where λ̂c is one of the classical critical parameters defined in continuum
percolation.

Keywords : Boolean model, continuum percolation,first passage percolation, critical point,
time constant.

1 Introduction and main results

1.1 Boolean model

The Boolean model is defined as follows. At each point of a homogeneous Poisson
point process on the Euclidean space Rd, we center a ball of random radius. We assume
that the radii of the balls are independent, identically distributed and independent of the
point process. The Boolean model is the union of the balls. There are three parameters:

— An integer d ≥ 2. This is the dimension of the ambient space Rd.
— A real number λ > 0. The intensity measure of the Poisson point process of centers

is λ| · | where | · | denotes the Lebesgue measure on Rd.
— A probabilty measure ν on (0,+∞). This the the common distribution of the

radii.
We will denote the Boolean model by Σ(λ, ν, d) or Σ.
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†LPMA, Université Paris Diderot, 5 rue Thomas Mann, 75205 Paris Cedex 13, France,

marie.theret@univ-paris-diderot.fr



More precisely, the Boolean model is defined as follows. Let ξ be a Poisson point
process on Rd × (0,+∞) with intensity measure λ| · | ⊗ ν. Set

Σ(λ, ν, d) =
⋃

(c,r)∈ξ

B(c, r)

where B(c, r) denotes the open Euclidean ball of Rd with center c and radius r. We refer
to the book by Meester and Roy [13] for background on the Boolean model. We also
denote by S(c, r) the Euclidean sphere of Rd with center c and radius r. We write S(r)
when c = 0.

In this paper, we will always assume∫
(0,+∞)

rdν(dr) <∞. (1)

When (1) does not hold, all the models we consider are trivial. This is due to the fact
that, if (1) does not hold, then for any λ > 0, with probability one, Σ = Rd. This is
Proposition 3.1 in [13].

Let us state a simple consequence of (1). With probability one, the number of random
balls which touch a given bounded subset of Rd is finite 1.

Let χ denote the set of centers, that is the projection of ξ on Rd. This is a Poisson
point process of intensity measure λ| · |. For each c ∈ χ, we denote by r(c) the unique 2

real r such that (c, r) belongs to ξ. When c ∈ Rd \ χ, we set r(c) = 0.

1.2 Paths

In this paper we only consider polygonal paths. A path is a finite sequence of distinct
points of Rd - if the points are not distinct, we simply name it a sequence. The length of
a path π = (x0, . . . , xk) is

`(π) =
k∑
i=1

‖xi − xi−1‖

where ‖ · ‖ denotes the usual Euclidean norm on Rd. In some cases, we will also see π
as a curve [0, `(π)] → Rd parametrized by arc length. A path from A ⊂ Rd to B ⊂ Rd

is a path such that π(0) ∈ A and π(`(π)) ∈ B. A path is in C ⊂ Rd if π([0, `(π)]) ⊂ C.
Notice that if π = (x0, . . . , xk) is a path, then π([0, `(π)]) is the finite union of the closed
segments [xi−1, xi] for i ∈ {1, . . . , k}. All these definitions can be extended to sequences
in a natural way.

1. Let n ≥ 1. The number Nn of random balls which touch B(0, n) is a Poisson random variable with
parameter

λ

∫
(0,+∞)

vd(r + n)dµ(dr)

where vd is the volume of the unit ball of Rd. Therefore, with probability one, all the Nn are finite.
2. Consider the projection from Rd× (0,+∞)→ Rd. With probability one, the restriction to ξ of this

projection is one-to-one.
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1.3 Percolation in the Boolean model

Two critical thresholds. If A and B are two subsets of Rd, we set

{A Σ←→ B} = {There exists a path in Σ from A to B}

and

{0 Σ←→∞} = {The connected component of Σ that contains the origin is unbounded}.

We define two critical thresholds by

λc = λc(ν, d) = sup{λ > 0 : P (0
Σ←→∞) = 0} ∈ [0,+∞]

and
λ̂c = λ̂c(ν, d) = sup{λ > 0 : lim

r→∞
P (S(r)

Σ←→ S(2r)) = 0} ∈ [0,+∞]

where S(u), u > 0, denotes the Euclidean sphere of radius u centered at the origin.

Non triviality of the thresholds. Recall that we assume (1). The thresholds are non
trivial. More precisely,

0 < λ̂c ≤ λc <∞.

The inequality λc <∞ is proven for a more general model by Hall in [9] (see Theorem 3).
In our setting, this can be proven in a simple way by coupling the Boolean percolation
model with a Bernoulli percolation model on Zd. This is explained in the remark below
the proof of Theorem 3.3 in the book by Meester and Roy [13]. The inequality λ̂c ≤ λc
is a consequence of the following simple fact:

P (0
Σ←→∞) = lim

r→∞
P (0

Σ←→ S(2r)) ≤ lim sup
r→∞

P (S(r)
Σ←→ S(2r)).

The proof of the inequality 0 < λ̂c is implicit in [6] where one of the main aims is to prove
the positivity of λc. We refer to Appendix A for more details.

The set {λ > 0 : limr→∞ P (S(r)
Σ←→ S(2r)) = 0} is open. This result is implicit in

[6]. We refer to Appendix A for more details.

Phase transition. In particular, λc is non trivial. Therefore, there exists a subcritical
phase and a supercritical phase for percolation.

— If λ < λc, then with probability one there is no unbounded component in Σ.
— If λ > λc, then with probability one there exists at least one (and actually a

unique) unbounded component in Σ.
We refer to [13] for background on percolation in the Boolean model.
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Sharp threshold. The critical parameter λc is probably the more intuitive to define,
however in what follows the relevant critical parameter to consider is λ̂c. This is the
reason why, even if we do not use these results in what follows, we gather here known
results concerning the link between λc and λ̂c.

If the radii are bounded, then λc = λ̂c. This is a sharp threshold property. The
sharpness of the transition in the discrete setting was proved independently by Menshikov
[14] and by Aizenman-Barsky [2]. The first proof of the equality λc = λ̂c relied on the
analogous result in the discrete setting. We refer to [13] for the proof (see Theorem 3.5)
and references. Ziesche gives in [15] a short proof of the equality λc = λ̂c for bounded
radii. It relies on a new and short proof of the analogous result in the discrete setting by
Duminil-Copin and Tassion [4, 5].

In dimension 2, the sharpness of the transition is one of the results proven recently by
Ahlberg, Tassion and Teixera in [1], using a strategy which is specific to the dimension 2.

1.4 First-passage percolation in the Boolean model

In [8], Régine Marchand and the first author studied a model introduced by Deijfen
in [3]. The model we introduce in this paper appears implicitly in [8] as an intermediate
model. We refer to [8] for the definition of Deijfen’s model and its links with the model
defined here.

A traveler walks on Rd. Inside the Boolean model Σ he walks at infinite speed. Outside
the Boolean model Σ he walks at speed 1. He travels from x ∈ Rd to y ∈ Rd as fast as
he can. We denote by T (x, y) the time needed to perform this travel. For example if x
and y belong to the same connected component of Σ, then T (x, y) = 0.

Here is a more formal definition. For any a and b in Rd, we define τ(a, b) as the 1-
dimensional Lebesgue measure of [a, b] \ Σ. With each path π = (x0, ..., xn) is associated
a time as follows:

τ(π) =
n∑
i=1

τ(xi−1, xi).

If x and y are two points of Rd, then T (x, y) is defined by:

T (x, y) = inf{τ(π) : π ∈ C(x, y)},

where C(x, y) is the set of paths from x to y.
A standard application of Kingman sub-additive theorem yields the following result.

Theorem 1 There exists a constant µ = µ(λ, ν, d) ∈ [0, 1] such that:

lim
‖x‖→∞

T (0, x)

‖x‖
= µ with probability 1 and in L1.

We emphasize the fact that the convergence stated in Theorem 1 is uniform in all direc-
tions. We refer to Appendix B for a proof. For any A,B ⊂ Rd we write

T (A,B) = inf
a∈A,b∈B

T (a, b).
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For any r > 0, we use the shorthand notation

T (r) = T ({0}, S(r)).

By Theorem 1 we get

lim
r→∞

T (r)

r
= µ a.s. and in L1. (2)

1.5 Link between percolation and first passage percolation; main
result

Consider the following condition:∫
(0,+∞)

ν([r,+∞))1/ddr <∞. (3)

It appears in the paper by Martin [12] about greedy lattice paths and animals. We refer
to [12] for a discussion about Condition (3). For example, for any ε > 0,∫

(0,+∞)

rd ln+(r)d−1+εν(dr) <∞⇒
∫

(0,+∞)

ν([r,+∞))1/ddr <∞⇒
∫

(0,+∞)

rdν(dr) <∞.

Here is the main result of this paper.

Theorem 2 Assume (3). Let λ > 0. Then

µ(λ, ν, d) = 0 if and only if λ ≥ λ̂c(ν, d).

Since the set {λ > 0 : limr→∞ P (S(r)
Σ←→ S(2r)) = 0} is open (see Appendix A),

Theorem 2 is in fact equivalent to the following proposition, that we actually prove in
the next sections.

Proposition 3 Assume (3). Let λ > 0. Then

µ(λ, ν, d) > 0 if and only if lim
r→∞

P (S(r)
Σ←→ S(2r)) = 0.

Let us define a new threshold by

λµ = λµ(ν, d) = sup{λ > 0 : µ(λ, ν, d) = 0} .

Theorem 2 can be reformulated to obtain the following corollary.

Corollary 4 Assume (3). Then

λµ = λ̂c.

Moreover,
µ(λµ(ν, d), ν, d) = 0.

Theorem 2 is analogous to the result of Kesten [10] (Theorem 6.1) in the framework
of Bernoulli percolation and first passage percolation on Zd. The proof of Kesten can be
adapted in our setting in the case of bounded radii. In the general case, some further
arguments are needed.

In [8], the following result was implicitly proved: if (3) holds, then µ(λ, ν, d) is positive
for small enough λ > 0. Theorem 2 is therefore a strengthening of this result.
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2 Proof of µ > 0⇒ limr→∞ P (S(r)
Σ←→ S(2r)) = 0

Let λ > 0. Let us first prove that

lim
r→∞

T (S(r), S(2r))

r
= µ a.s. (4)

Any path from 0 to S(2r) can be seen as the concatenation of a first path from 0 to S(r)
and a second path from S(r) to S(2r). Taking infimums, we get

T (0, S(r)) + T (S(r), S(2r)) ≤ T (0, S(2r)). (5)

On the other hand, for any x in S(r) we have

T (0, S(2r)) ≤ T (0, x) + T (x, S(2r))

≤

(
sup

x′∈S(r)

T (0, x′)

)
+ T (x, S(2r)).

Taking the infimum in x, we now get

T (0, S(2r)) ≤

(
sup

x′∈S(r)

T (0, x′)

)
+ T (S(r), S(2r)). (6)

From (5) and (6) we get

T (0, S(2r))−

(
sup

x′∈S(r)

T (0, x′)

)
≤ T (S(r), S(2r)) ≤ T (0, S(2r))− T (0, S(r)).

By Theorem 1 we then deduce (4).

Now assume µ(λ, ν, d) > 0. Let us prove limr→∞ P (S(r)
Σ←→ S(2r)) = 0. For all

r > 0,

P
(
S(r)

Σ←→ S(2r)
)
≤ P

(
T (S(r), S(2r))

r
= 0

)
.

But this tends to 0 as r tends to infinity thanks to (4) and the assumption µ > 0.

3 Proof of limr→∞ P (S(r)
Σ←→ S(2r)) = 0⇒ µ > 0

Let λ > 0 such that limr→∞ P (S(r)
Σ←→ S(2r)) = 0. In this section, we prove that

this implies µ(λ, ν, d) > 0. Let us give the plan of the proof. First fix a large enough

A. Since limr→∞ P (S(r)
Σ←→ S(2r)) = 0, we can suppose that with high probability

the time needed to cross an annulus of the form B(x, 2A) \ B(x,A) is bigger than some
positive constant. We consider now a very large r, a lot bigger than A. We consider a
nice geodesic π from 0 to the Euclidean sphere S(r). Say, for concreteness, that a random
ball of the Boolean model is large if its radius is larger that 10A.
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First, imagine that there exists no large random balls. The idea is then to discretize
the geodesic π in a convenient way at scale A: the traveler, when moving along the
geodesic, crosses several annuli of the form B(x, 2A) \ B(x,A). As explained previously,
each time the traveler crosses such an annulus, this costs him some amount of time
with high probability. As there is no large balls, what occurs in far enough annuli is
independent and the positivity of µ follows.

The difficulty is to take care of large balls. If τA(π) denotes the time needed to travel
along the path π when we throw away large balls, then we can write

T (r) = τ(π) = τA(π)−
(
τA(π)− τ(π)

)
.

We then have to give for the perturbation
(
τA(π)−τ(π)

)
an upper bound which is smaller

than the lower bound we obtain for τA(π). This is achieved by relating the perturbation
to the greedy paths model and by working on the discretization of our path.

3.1 Greedy paths

Let π = (x0, . . . , xk) be a path. Recall that a path is a family of distinct points of Rd.
Set

r(π) =
∑

1≤i≤k

r(xi)

(recall that r(x) is defined at the end of the paragraph about the Boolean model) and

S = sup
π

r(π)

`(π)

where the supremum runs over all paths such that x0 = 0 and k ≥ 1. Note that the
intensity measure of the underlying Poisson point process ξ is λ| · | ⊗ ν = | · | ⊗ λν.

We can consider the greedy path model when the intensity measure is | · | ⊗m where
m is a given finite measure on (0,+∞). In that case, we write rm(π) and Sm.

Theorem 5 ([8]) Let m be a finite measure on (0,+∞). There exists a constant C =
C(d) such that

E (Sm) ≤ C

∫
(0,∞)

m
(
(r,+∞)

)1/d
dr.

This is a consequence of (11) in [8] and Lemma 2.1 in the same article. Note that the
results requires the assumption d ≥ 2. The result is the analogue in the continuous setting
of a result by Martin [12] in the discrete setting.

3.2 Constants

Fix η = η(d) > 0 such that

Rd ⊂
⋃
i∈Zd

B(ηi, 1). (7)

Let K = K(d) be the cardinality of B(0, 12η−1)∩Zd. Fix κ = κ(d) > 0 large enough and
ε = ε(d) > 0 small enough such that

K exp(−κ/2) +K exp(κ/2)ε ≤ 1/2. (8)
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This will be used as follows. Let k ≥ 1. Let S(k) be the set of sequences (s(0), . . . , s(k−1))
of distinct elements of Zd such that s(0) = 0 and, for any i ∈ {1, . . . , k− 1}, ‖s(i)− s(i−
1)‖ ≤ 12η−1. Let (Zx)x∈Zd be a familly of random variables with Bernoulli distribution
of parameter at least 1− ε. Assume that for any (s(0), . . . , s(k − 1)) in S(k), the family
(Zs(0), . . . , Zs(k−1)) is independent. Then

P

(
inf

(s(0),...,s(k−1))∈S(k)

1

k

k−1∑
i=0

Zs(i) ≥
1

2

)
≥ 1− 1

2k
. (9)

Let us prove this inequality. If the infimum is smaller that 1/2, then there exists at least
one path s ∈ S(k) such that

1

k

k−1∑
i=0

Zs(i) ≤
1

2
.

But the probability of such an event is bounded from above by

P

(
1

k

k−1∑
i=0

Z ′i ≤
1

2

)
where the Z ′i are i.i.d.r.v. with Bernoulli distribution of parameter 1− ε. Therefore

P

(
inf

(s(0),...,s(k−1))∈S(k)

1

k

k−1∑
i=0

Zs(i) ≤
1

2

)
≤ card(S(k))P

(
k−1∑
i=0

Z ′i ≤ k/2

)
≤ Kk−1

(
exp(κ/2)

(
(1− ε) exp(−κ) + ε

))k
≤

(
K exp(−κ/2) +K exp(κ/2)ε

)k
≤ 1

2k

by (8).

Fix A = A(λ, ν, d) > 0 large enough such that

P (S(A)
Σ←→ S(2A)) ≤ ε/2

and

C

∫
(0,+∞)

λ1/dνA
(
(r,+∞)

)1/d
dr ≤ 20000−1 (10)

where C is the constant which appears in Theorem 5 and where the measure νA is defined
by νA(·) = ν(·[0,∩A]). Since 3

{S(A)
Σ←→ S(2A)}c ⊂ {T (S(A), S(2A)) > 0}.

we have
P (T (S(A), S(2A)) > 0) ≥ 1− ε/2.

Therefore we can fix δ = δ(λ, ν, d) > 0 such that

P (T (S(A), S(2A)) ≥ δ) ≥ 1− ε. (11)

3. Here is one way to prove the inclusion. There exists a geodesic π such that T (S(A), S(2A)) = τ(π).
This can be proven for example by adapting and simplifying the proof of Lemma 6. The inclusion

{S(A)
Σ←→ S(2A)}c ⊂ {T (S(A), S(2A)) > 0} follows from the existence of the geodesic.
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3.3 Geodesics

The aim of the section is to prove the existence of a geodesic from 0 to S(r) (r > 0)
that have good properties, as listed in the following lemma.

Lemma 6 For any r > 0 there exists a path π = (x0, . . . , xk) such that

(i). x0 = 0, ‖xk‖ = r and, for all i, ‖xi‖ ≤ r.

(ii). τ(π) = T (r).

(iii). `(π) is minimal among all paths satisfying (i) and (ii).

(iv). For any ball B = B(c, r(c)) of the Boolean model, π−1(B) (here we see π as a
curve parametrized by arc-length) is an interval of length at most 2r(c) (which can
be empty).

We do not need the property (iii) of the geodesic π but we use it as a tool to prove the
property (iv). To prove Lemma 6 we use two intermediate lemmas. Let us first prove the
following result. Recall that a path is a sequence whose points are distinct.

Lemma 7 For any r > 0 and any sequence π1 from 0 to S(r) there exists a path π2 =
(x0, . . . , xn) from 0 to S(r) such that

(a). τ(π2) ≤ τ(π1) and `(π2) ≤ `(π1).

(b). For all i ∈ {0, n}, xi ∈ B(0, r).

(c). For all i ∈ {1, . . . , n− 1}, there exists (c, ρ) ∈ ξ such that xi ∈ B(c, ρ).

(d). For all (c, ρ) ∈ ξ, there exists at most two indices i ∈ {1, . . . , n − 1} such that
xi ∈ B(c, ρ)

(e). n ≤ 2N + 2 where N denotes the number of random balls of the Boolean model
which touch B(0, r).

Proof of Lemma 7. The strategy is simple. We start from the sequence π1. We then
perform a finite number of steps, that are illustrated in Figures 1 and 2. None of them
increases the length nor the travel time of the sequence. Moreover, at the end of the
procedure, we get a path which fulfills the required properties. For ease of notation, at
each step, we write the sequence (x0, . . . , xn) even if the sequence is modified. A point of
the sequence is one of the xi.

Step 1. If there exists i, j ∈ {0, n} such that xi = xj and i < j then we remove points
xk for k ∈ {i+1, . . . , j}. We repeat this action until there exists no more such i, j.
We get a path from 0 to S(r) which satisfies (a): its length is at most the length
of the initial sequence and its travel time is at most the travel time of the initial
sequence.

Step 2. Then, we stop the path (seen as a curve) at its first intersection with S(r).
We get a path from 0 to S(r) satisfying (a) and (b). From now on, we will never
change the first nor the last point of the path.

Step 3. Write

∂ =
⋃

(c,ρ)∈ξ

S(c, ρ).
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x0 = 0

x1

x2

x3

x6

x7

x10

x12x9

x4

S(r)

x5 = x8

The sequence

π1 = (x0, . . . , x12)

and the balls of the

Boolean model

(in grey).

x11

x0 = 0

x1

x2

x3

x4

S(r)

x5

x6

x7

(x0, . . . , x7)

obtained after

Steps 1 and 2.

The path

x0 = 0

S(r)

x1

x2
x3

x4

x5

x6

x7

x8

x9

x10

x12

x13

x14

x11

x15

The path

obtained after

Step 3.

x16
x17

x18
x19

x20

(x0, . . . , x20)

Figure 1 – Evolution of a sequence π1 through Steps 1, 2 and 3 of the procedure.

We add successively (when the point is not yet a point of the path) to the path
each intersection between the path (seen as a curve) and ∂. Recall that we work
on the full event ”the number of random balls of the Boolean model which touch
B(0, r) is finite”. The number of intersection between the path and ∂ is therefore
finite. The new path satisfies (a) and (b).

Step 4. Let i, j ∈ {1, . . . , n− 1} be such that
— i ≤ j and for all k ∈ {i, . . . , j}, xk does not belong to Σ.
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x0 = 0
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x4
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x8
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The path

Step 4.

x15

(x0, . . . , x15)
x11 x13
x12

x2

x6

x10

x14

x0 = 0

S(r)

x1

x2

x3

x4

x5

x6 x7
The path

obtained after

Step 5.

x9

(x0, . . . , x9)

x8

Figure 2 – Evolution of a sequence π1 through Steps 4 and 5 of the procedure.
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— i− 1 = 0 or xi−1 ∈ Σ.
— j + 1 = n or xj+1 ∈ Σ.
Then the path strictly between xi−1 and xj+1 does not touch Σ. Otherwise the
curve would touch the boundary ∂. Therefore, the travel length of the path be-
tween xi−1 and xj+1 is at least

‖xi − xi−1‖+ · · ·+ ‖xj+1 − xj‖ ≥ ‖xj+1 − xi−1‖ ≥ τ(xi−1, xj+1).

As a consequence, we can remove points xk, for k ∈ {i, . . . , j} for any such i, j
without increasing the length nor the travel time of the path. We get a path
satisfying (a), (b) and (c).

Step 5. We consider successively each point xi, i ∈ {0, . . . , n} of the path. If there
exists j ∈ {0, n} such that xi and xj belong to the closure of the same random ball
of the Boolean model and if j ≥ i+2, then (xi, xj) ⊂ Σ and therefore τ(xi, xj) = 0.
As a consequence, we can remove any point xk with k ∈ {i+ 1, . . . , j− 1} without
increasing the length nor the travel time of the path. We repeat this procedure
until there exists no more such i and j. In particular, we get a path satisfying (a),
(b), (c) and (d). (e) is a consequence of (b), (c) and (d).

�
Let N be the number of random balls of the Boolean model which touch B(0, r). We

say that a sequence (x0, . . . , xn) is a good sequence if n ≤ 2N + 2, x0 = 0, xn ∈ S(r)
and all the xi belongs to B(0, r). We say that a good sequence (x0, . . . , xn) is a perfect
sequence if n = 2N + 2. Set

Pr = {perfect sequences} = {0} ×B(0, r)
2N
× S(r).

We will use Lemma 7 through the following simple consequence.

Lemma 8 Let r > 0.
— For any sequence πs from 0 to S(r) there exists a good path πp from 0 to S(r) such

that τ(πp) ≤ τ(πs) and `(πp) ≤ `(πs).
— For any path πp from 0 to S(r) there exists a perfect sequence πs from 0 to S(r)

such that τ(πp) ≤ τ(πs) and `(πp) ≤ `(πs).

Proof of Lemma 8. The first part is a weak form a Lemma 7. Let us prove the second
part. Let πp be a path from 0 to S(r). By Lemma 7 there exists a good path (x0, . . . , xn)
from 0 to S(r) such that τ((x0, . . . , xn)) ≤ τ(πp) and `((x0, . . . , xn)) ≤ `(πp). We build a
perfect sequence πs by adding vertices xn+1 = · · · = x2N+2 = xn. The perfect sequence
πs fulfills the required properties. �

Proof of Lemma 6. Here is the idea: (i), (ii) and (iii) follows by some compactness
and continuity argument ; (iv) is then a consequence of (iii). Here is a detailed proof.

By Lemma 8,
T (r) = inf

π∈Pr

τ(π). (12)

The set Pr, endowed with its usual topology, is compact. The function ` is continuous.
Let us prove the continuity of τ on the full probability event ”the number of random balls
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that touch any bounded region is finite”. It is sufficient to prove the continuity of the
map defined by (a, b)→ τ(a, b) where a, b ∈ Rd. For any a, b ∈ Rd,

τ(a, b) = ‖b− a‖
∫ 1

0

1a+t(b−a)/∈Σ dt.

Let (a, b) ∈ Rd. If a = b then the continuity at (a, b) is straightforward as the time needed
to travel a segment is at most the length of the segment. Let us assume a 6= b. Let (an)n
and (bn)n be two sequences which converge to a and b. Write

τ(an, bn) = ‖bn − an‖
∫ 1

0

1an+t(bn−an)/∈Σ dt.

The intersection of [a, b] with the boundary of Σ is finite. Therefore for almost any
t ∈ [0, 1], a + t(b − a) does not belong to the boundary of Σ (here we use a 6= b). As a
consequence, for almost any t ∈ [0, 1],

lim
n→∞

1an+t(bn−an)/∈Σ = 1a+t(b−a)/∈Σ.

The result follows by dominated convergence.
By compacity of Pr and by continuity of τ , there exists a non empty set P̂r ⊂ Pr such

that for all π ∈ P̂r, τ(π) = T (r). Moreover P̂r is also compact, thus by continuity of `
we get the existence of a perfect sequence πs satisfying (i), (ii) and

(iii’). `(πs) is minimal among all perfect sequences satisfying (i) and (ii).

By Lemma 7 we get a good path πp from 0 to S(r) such that τ(πp) ≤ τ(πs) and

`(πp) ≤ `(πs). (13)

Thanks to (12) and τ(πs) = T (r), the former inequality yields

τ(πp) = T (r).

In other words, πp satisfies (i) and (ii). Let π̃p be a path satisfying (i) and (ii). By Lemma
8 we get a perfect sequence π̃s from 0 to S(r) such that τ(π̃s) ≤ τ(π̃p) and

`(π̃s) ≤ `(π̃p). (14)

Since τ(π̃p) = T (r), the former inequality yields

τ(π̃s) = T (r).

In other words, π̃s is a perfect sequence satisfying (i) and (ii). From (13), (iii’) and (14)
we get

`(πp) ≤ `(πs) ≤ `(π̃s) ≤ `(π̃p)

and then
`(πp) ≤ `(π̃p).

Therefore πp satisfies (iii).

13



For ease of notation, we now write π for πp. It remains to check that, as a consequence
of (i), (ii) and (iii), π also fulfills (iv). Let us see our path as a curve π : [0, `(π)] → Rd

parametrized by arc-length. Let B be a random ball that touches the path. Set

a = inf π−1(B) and b = supπ−1(B).

Let π̃ be the path (seen as a curve parametrized by arc-length) obtained by concatenation
(with a slight abuse of notation) of π|[0,a], [π(a), π(b)] and π|[b,`(π)]. As (π(a), π(b)) is
contained in B we have τ(π(a), π(b)) = 0. Therefore τ(π̃) ≤ τ(π) and then τ(π̃) = τ(π)
by (ii). By (iii) we then get `(π̃) ≥ `(π). Substracting the length of the commons parts of
the paths, we deduce that the length of π between π(a) and π(b) is at most ‖π(b)−π(a)‖.
As π is parametrized by arc-length, this implies that the paths goes straight from π(a)
to π(b). This implies (iv). �

3.4 Good sites

Set
Σ− =

⋃
(c,r)∈ξ:r<A

B(c, r).

In other words, we throw away all balls of radius larger than A. Let T− be defined from
Σ− in the same way as T is defined from Σ. In particular T− ≥ T .

For any i ∈ Zd, we say that Site i is good if T−(S(ηiA,A), S(ηiA, 2A)) ≥ δ. By
stationarity, by the inequality T− ≥ T and by (11), a given site is good with probability
at least 1 − ε. Moreover, as we only consider random balls with radius smaller that A,
the state of Site i only depends on balls whose center belongs to B(ηiA, 3A). Therefore,
the state of Sites i and j are independent as soon as ‖i− j‖ ≥ 6η−1.

3.5 Skeletons of the geodesic.

Let r ≥ 20A. Let π be the geodesic given by Lemma 6. We see π as a curve
[0, `(π)]→ Rd parametrized by arc length.

Lemma 9 Set
k = dr/(20A)e. (15)

There exists a sequence 0 = t(0) ≤ t(1) ≤ · · · ≤ t(k) ≤ `(π) such that

1. For any distinct j, j′ ∈ {0, . . . , k}, ‖π(t(j))− π(t(j′))‖ ≥ 10A.

2. For any j ∈ {1, . . . , k}, ‖π(t(j))− π(t(j − 1))‖ ≤ 10A.

Proof. We first build a sequence 0 = t1(0) ≤ t1(1) · · · ≤ t1(k1) ≤ `(π) as follows. Let
t1(0) = 0 and k1 = 0. We proceed by induction as follows. At each step we consider the
set {

t ∈ [t1(k1), `(π)] : π(t) 6∈
⋃
j≤k1

B
(
π(t1(j)), 10A

)}
.

— If the set is empty, then the construction is over.
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— Otherwise, we define t1(k1 + 1) as the minimum of this non empty set, we increase
by one k1 and the construction goes on.

By construction, the sequence built above fulfills the following properties.

1. For any distinct j, j′ ∈ {0, . . . , k1}, ‖π(t1(j))− π(t1(j′))‖ ≥ 10A.

2. For any j ∈ {1, . . . , k1}, there exists j′ ∈ {0, . . . , j − 1} such that ‖π(t1(j)) −
π(t1(j′))‖ ≤ 10A.

Thanks to the stopping criterion, there exists k ∈ {0, . . . , k1} such that ‖π(tk)‖+10A ≥ r.
Throwing away some points if needed, we can therefore assume that the sequence also
satisfies

‖π(t1(k1))‖+ 10A ≥ r.

We now remove the loops in the sequence to get a new sequence 0 = t2(0) ≤ t2(1) ≤
· · · ≤ t2(k2) ≤ `(π) such that

1. For any distinct j, j′ ∈ {0, . . . , k2}, |π(t2(j))− π(t2(j′))| ≥ 10A.

2. For any j ∈ {1, . . . , k1}, ‖π(t1(j))− π(t1(j − 1))‖ ≤ 10A.

3. t2(k2) = t1(k1).

We can for example use the following backward construction. For each j ∈ {1, . . . , k1} we
define a(j) as the smallest j′ ∈ {0, . . . , j− 1} such that ‖π(t1(j))−π(t1(j′))‖ ≤ 10A. Let
k2 be the smallest integer k such that a(k)(k1) = 0, where a(k) is the k fold composition
of a with itself. Then our new sequence is defined by

t2(0) = t1
(
a(k2)(k1)

)
= 0,

t2(1) = t1
(
a(k2−1)(k1)

)
,

t2(2) = t1
(
a(k2−2)(k1)

)
,

...

t2(k2) = t1
(
a(0)(k1))

)
= t1(k1).

It fulfills the required properties.

As t2(k2) = t1(k1) we get

‖π(t2(k2))‖+ 10A = ‖π(t1(k1))‖+ 10A ≥ r.

Thanks to the second property of the second sequence and to the fact that π(t2(0)) =
π(0) = 0, we get

10k2A+ 10A ≥ r.

As r ≥ 20A we get k2 ≥ 1 and then 20k2A ≥ r. Therefore k2 ≥ k, where k = dr/(20A)e as
defined in the Lemma. Thus, by throwing away, if needed, the last elements of our second
sequence, we get a third sequence which fulfills the properties stated in the Lemma. �

We define a new sequence s(0), . . . , s(k) which is, in some sense, a discretization of
the sequence t(0), . . . , t(k). We set s(0) = 0. For all j ∈ {1, . . . , k}, we chose s(j) ∈ Zd
such that π(t(j)) belongs to B(ηs(j)A,A). This is possible thanks to (7).
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Lemma 10 The sequence s(0), . . . , s(k) fulfills the following properties.

1. For all j ∈ {0, . . . , k}, π(t(j)) belongs to B(ηs(j)A,A).

2. For all distinct j, j′ ∈ {0, . . . , k}, ‖s(j)− s(j′)‖ ≥ 8η−1.

3. For all j ∈ {1, . . . , k}, ‖s(j)− s(j − 1)‖ ≤ 12η−1.

Proof. The first property holds by definition for any index j ≥ 1. It also holds for
j = 0 as π(t(0)) = π(0) = 0. Let j, j′ be two distinct elements of {0, . . . , k}. By Lemma
9, we have

‖π(t(j))− π(t(j′))‖ ≥ 10A.

By definition of s(j) and s(j′), we get ‖ηs(j)A− ηs(j′)A‖ ≥ 8A and then |s(j)− s(j′)| ≥
8η−1. The third property stated in the lemma is proven in the same way. �

3.6 About disturbant balls

For all j ∈ {0, . . . , k}, we set

Π(j) = π
(
[0, `(π)]

)
∩B(ηs(j)A, 2A)

where π is still the geodesic given by Lemma 6 seen as a curve parametrized by arc length.
Let us say that a random ball B(c, r(c)) of the Boolean model disturbs the site s(j) if
Π(j) ∩ B(c, r(c)) 6= ∅ and if r(c) ≥ A. If no random ball disturbs the site s(j), then the
travel time of the geodesic inside B(ηs(j)A, 2A) does not depend on large balls. Set

D(j) = {centers of random balls which disturb site s(j)}

and
D =

⋃
j∈{0,...,k}

D(j).

We will use the following upper bound on the number of sites s(j) which are disturbed
by a given large ball of the Boolean model.

Lemma 11 Let B(c, r(c)) be a random ball of the Boolean model such that r(c) ≥ A.
Let j ∈ {0, . . . , k}. Then

card({j ∈ {0, . . . , k} : Π(j) ∩B(c, r(c)) 6= ∅}) ≤ 2r(c)

A
.

Proof. The idea is that the geodesic restricted to B(c, r(c)) is an open line segment of
length at most 2r(c) and that points in different B(ηs(j)A, 2A) are at least at distance
4A from each other. Let us give a detailed proof. For all j ∈ {0, . . . , k}, we set

T (j) = π−1
(
B(ηs(j)A, 2A)

)
.

Note that Π(j) = π(T (j)). Set

J = {j ∈ {0, . . . , k} : π(T (j)) ∩B(c, r(c)) 6= ∅}.
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We aim at proving card(J) ≤ 2r(c)/A.
For all j ∈ J , fix t′(j) ∈ T (j) such that π(t′(j)) ∈ B(c, r(c)). As t′(j) ∈ T (j), we have

π(t′(j)) ∈ B(ηs(j)A, 2A). For any distinct j, j′ ∈ J , by Lemma 10, we thus have

|π(t′(j))− π(t′(j′))| ≥ |ηs(j)A− ηs(j′)A| − 4A ≥ 8A− 4A = 4A.

As π is parametrized by arc length, we then get

|t′(j)− t′(j′)| ≥ 4A. (16)

By Lemma 6, π−1(B(c, r(c))) is an interval of length at most 2r(c). Ordering the t′(j), j ∈
J , using the fact that each such t′(j) belongs to π−1(B(c, r(c))) and using (16) we thus
get

2r(c) ≥ max
j
t′(j)−min

j
t′(j) ≥ 4A(card(J)− 1).

Therefore

card(J) ≤ r(c)

2A
+ 1 ≤ 2r(c)

A

as r(c) ≥ A. �

3.7 A second path

We define a new path π̃. The definition of π̃ is in a sense artificial, since it is built to
enable the use of the results on greedy paths.

— It starts from ηs(0)A = 0 and visits each point of D(0) (see the subsection about
disturbing balls), if any.

— Then it goes to ηs(1)A and visits each point of D(1) it has not visited yet, if any.
— Then it goes to ηs(2)A and visits each point of D(2) it has not visited yet, if any.
— . . .
— Then it goes to ηs(k)A and visits each point of D(k) it has not visited yet, if any.

In particular, π̃ visits all points ηs(j)A, 0 ≤ j ≤ k. By Lemma 10 we get

`(π̃) ≥ 8Ak.

As k ≥ r/(20A), we get
`(π̃) ≥ r/4. (17)

If a random ball B(c, r(c)) disturbs a site s(j), then

‖c− ηs(j)A‖ ≤ 2A+ r(c) ≤ 3r(c). (18)

We can easily give an upper bound on the length of π̃ by considering the longer sequence
in which in the definition ”visits each point of D(j) it has not visited yet” is replaced by
”goes back and forth between ηs(j)A and points of D(j) it has not visited yet”. Using
(18) and Lemma 10, we get

`(π̃) ≤ 12Ak + 2
∑
c∈D

3r(c) = 12Ak + 6
∑
c∈D

r(c). (19)
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3.8 A lower bound on T (r)

Let us first check

T (r) = τ(π) ≥ δ
k−1∑
j=0

1
s(j) is a good site and D(j)=∅. (20)

This is a consequence of the following facts.
— For any j ∈ {0, . . . , k − 1}, the path π crosses the annulus B(ηs(j)A, 2A) \

B(ηs(j)A,A). This is a consequence of Items 1 and 2 of Lemma 10 which yield,
for any such j, π(t(j)) ∈ B(ηs(j)A,A) and π(t(j + 1)) 6∈ B(ηs(j)A, 2A).

— The balls B(ηs(j)A, 2A), j ∈ {0, . . . , k−1} are disjoint. Therefore the travel length
of π is at least the sum of the travel length of π inside each annulus B(ηs(j)A, 2A)\
B(ηs(j)A,A). .

— For any j ∈ {0, . . . , k − 1}, if D(j) is empty, then the travel time of π inside
B(ηs(j)A, 2A) does not change if we throw away random balls of radii at least A.

— If, in addition, s(j) is a good site, then the travel time of π inside B(ηs(j)A, 2A)
is at least δ.

From (20) we deduce

T (r) ≥ δ
k−1∑
j=0

1
s(j) is a good site − δ

k−1∑
j=0

1D(j)6=∅.

By Lemma 11, a given random ball B(c, r(c)) such that r(c) ≥ A disturbs at most 2r(c)/A
sites. Therefore

T (r) ≥ δ
k−1∑
j=0

1
s(j) is a good site − δ

∑
c∈D

2r(c)

A

where we recall that D is the union of D(j), j = 0 . . . k. Recall that any point of D is an
element of the path π̃ seen as a sequence. Note also that any point of D is the center of
a ball of radius at least A. Therefore, using the notations of the greedy paths model,∑

c∈D

r(c) ≤ rλνA(π̃) (21)

where
νA = ν(· ∩ [A,+∞[)

and where we use the natural coupling between the Poisson point process which defines
the Boolean model and the Poisson point process which defines the above greedy paths
model: we just throw away all point (c, r) such that r < A. Therefore

T (r) ≥ δ
k−1∑
j=0

1
s(j) is a good site −

2δ

A
rλνA(π̃).

At this point we would like to divide T (r) by r, the first sum on the right-hand side by
k and the second sum by `(π̃). By definition of k (see (15)), r and k are closely related.
The links between `(π̃) and r (or k) is less clear. Therefore we use the following trick.

T (r) ≥ δ

k−1∑
j=0

1
s(j)is a good site +

24δ

A
rλνA(π̃)− 26δ

A
rλνA(π̃).
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By (17) we get
T (r)

r
≥ T (r)

4`(π̃)

and then

T (r)

r
≥ δ

(∑k−1
j=0 1

s(j) is a good site + 24
A
rλνA(π̃)

4`(π̃)
−

26
A
rλνA(π̃)

4`(π̃)

)

=
δ

A

(
A
∑k−1

j=0 1
s(j) is a good site + 24rλνA(π̃)

4`(π̃)
− 13

2

rλνA(π̃)

`(π̃)

)
.

Using (19) and (21) we then get

T (r)

r
≥ δ

A

(
A
∑k−1

j=0 1
s(j) is a good site + 24rλνA(π̃)

48Ak + 24rλνA(π̃)
− 13

2

rλνA(π̃)

`(π̃)

)
.

Using

A
k−1∑
j=0

1
s(j) is a good site ≤ 48Ak

we obtain

T (r)

r
≥ δ

A

(
A
∑k−1

j=0 1
s(j) is a good site

48Ak
− 13

2

rλνA(π̃)

`(π̃)

)

=
δ

A

(∑k−1
j=0 1

s(j) is a good site

48k
− 13

2

rλνA(π̃)

`(π̃)

)
.

Recall that S(k) denotes the set of sequences (s′(0), . . . , s′(k− 1)) of distinct elements of
Zd such that s′(0) = 0 and, for any i ∈ {1, . . . , k − 1}, ‖s′(i)− s′(i− 1)‖ ≤ 12η−1. Using
also notations for greedy paths, we thus get

T (r)

r
≥ δ

A

(
infs′∈S

∑k−1
j=0 1

s′(j) is a good site

48k
− 13

2
SλνA

)
.

By (9) we get

P

(
infs′∈S

∑k−1
j=0 1

s′(j) is a good site

k
<

1

2

)
≤ 1

2k
≤ 1

2
.

The latter inequality follows from the definition of k (see (15)) and the assumption r ≥
20A. By Theorem 5 and by (10) we get

P (SλνA ≥ 1/4000) ≤ 4000E (SλνA) ≤ 4000C

∫ ∞
0

(
λνA([r,+∞))

)1/d

dr ≤ 1

4
.
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Therefore

P

(
SλνA ≤ 1/4000 and

infs′∈S
∑k−1

j=0 1
s′(j) is a good site

k
≥ 1

2

)
≥ 1

4

and therefore

P

(
T (r)

r
≥ δ

200A

)
≥ 1

4
.

As T (r)/r converges in probability to µ, we get µ > 0.

Appendices

A Openness of {λ > 0 : limr→∞ P (S(r)
Σ←→ S(2r)) = 0}

and positivity of λ̂c

The aim of this section is to provide a proof of the following result. Recall that we
assume (1).

Theorem 12 The set

{λ > 0 : lim
r→∞

P (S(r)
Σ←→ S(2r)) = 0}

is open and non-empty. In particular, λ̂c is positive.

The positivity of λ̂c is implicit in [6]. The openness is a simple consequence of inter-
mediate results in [6]. Both results are also consequences of Theorems 2.7 and 2.8 in [7]
which deal with a more general framework.

We choose to give a proof using intermediate results in [6]. There is essentially no
novelty in this section.

Let us recall some notation from [6]. Let α > 0.
— Σ(B(0, α)) is the union of random balls of the Boolean model with centers in

B(0, α).
— G(0, α) is the event ”there exists a path from S(α) to S(8α) in Σ(B(0, 10α))”.
— H(α) is the event ”there exists a random ball of the Boolean model with which

touches B(0, 9α) and whose center is outside B(0, 10α)”.
— Π(α) = P (G(0, α)).

The article [6] focus on the property limα→∞Π(α) = 0 while in this article we focus on

the property limα→∞ P (S(α)
Σ←→ S(2α)) = 0. This is only a matter of taste, as shown

by the first part of the following proposition. Set

ε(α) =

∫
[α,+∞)

rdν(dr). (22)

Note that limα→∞ ε(α) = 0.
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Proposition 13 There exists a constant K = K(d) such that, for any α > 0,

Π(α) ≤ P (S(α)
Σ←→ S(2α)) ≤ KΠ(α/10) + λKε(α/10), (23)

Π(10α) ≤ KΠ(α)2 + λKε(α), (24)

Π(α) ≤ λKαd, (25)

where ε, defined by (22), tends to 0 at ∞.

Proof. Inequalities (24) and (25) are part of Proposition 3.1 in [6]. Let us prove (23).
Let A be a finite subset of S(1) such that S(1) is covered by the union of the balls
B(a, 1/10), a ∈ A. Let K1 = K1(d) denote the cardinality of A.

Let α > 0. The first inequality is straightforward as

G(0, α) ⊂ {S(α)
Σ←→ S(2α)}.

By definition of A, S(α) is covered by the union of the balls B(αa, α/10), a ∈ A. More-
over, all the balls B(αa, 8α/10), a ∈ A, are contained in B(0, 2α). Therefore

{S(α)
Σ←→ S(2α)} ⊂

⋃
a∈A

{S(a, α/10)
Σ←→ S(a, 8α/10)}.

By union bound, by stationarity and by definition of K1 we get

P (S(α)
Σ←→ S(2α)) ≤ K1P (S(α/10)

Σ←→ S(8α/10)).

Note
{S(α/10)

Σ←→ S(8α/10)} ⊂ G(0, α/10) ∪H(α/10). (26)

Indeed, assume the existence of a path in Σ from S(α/10) to S(8α/10). We can assume
that the path is in B(8α/10). If moreover H(α/10) does not occur, then the path is in
Σ(B(0, 10α/10)) and thus G(0, α/10) occurs. Therefore,

P (S(α)
Σ←→ S(2α)) ≤ K1Π(α/10) +K1P (H(α/10)).

But there exists a constant K2 = K2(d) such that,

P (H(α/10)) ≤ λK2ε(α/10).

This is Lemma 3.4 in [6]. The lemma follows. �

Inequality (24) yieds the following result.

Lemma 14 We use the constant K from the previous lemma. Let M > 0. Assume

λK2ε(M) ≤ 1

4
(27)

and, for all α ∈ [M, 10M ],

KΠ(α) ≤ 1

2
. (28)

Then limα→∞Π(α) = 0.
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Proof. This is a consequence of (24) and Lemma 3.7 in [6]. Showing how to apply
Lemma 3.7 would not be much shorter than adapting the proof in our context. Therefore
we choose to give a full proof. By (24), for all α > 0,

KΠ(10α) ≤
(
KΠ(α)

)2
+ λK2ε(α). (29)

As ε is non-increasing, (27) yields, for all α ≥M ,

KΠ(10α) ≤
(
KΠ(α)

)2
+

1

4
.

Therefore, if moreover KΠ(α) ≤ 1/2, then KΠ(10α) ≤ 1/2. Using (28) and induction
we deduce, for all α ≥M , KΠ(α) ≤ 1/2. As a consequence,

lim sup
α→∞

KΠ(α) ≤ 1

2
.

As ε tends to 0 at ∞ we get, using (29),

lim sup
α→∞

KΠ(α) ≤
(

lim sup
α→∞

KΠ(α)

)2

.

As a consequence of the two previous inequalities we get lim supα→∞KΠ(α) = 0. �

Proof of Theorem 12. By (23),

I = {λ > 0 : lim
r→∞

P (S(r)
Σ←→ S(2r)) = 0} = {λ > 0 : lim

α→∞
Π(α) = 0}.

Let us first prove that I is non empty. Set M = 1. By (25), for small enough λ > 0,
Assumptions (27) and (28) hold for every α ∈ [1, 10]. By Lemma 14, all such α belong
to I.

Let us now prove that I is open. If λ belongs to I, then any smaller positive real
number belongs to I. Therefore, we only have to show that, for any λ ∈ I, there exists
η > 0 such that λ+ η ∈ I. We now fix λ ∈ I. Note that ε and K does not depend on the
density λ. We emphasize the dependence of Π on λ by writing Πλ. As Πλ and ε tends to
0 at infinity we can fix M > 0 such that

(λ+ 1)K2ε(M) ≤ 1

4
(30)

and, for all α ∈ [M, 10M ],

KΠλ(α) ≤ 1

4
.

Let η > 0. Consider a Boolean model Σ′ with parameters (η, ν, d) independent of Σ. Then
Σ∪Σ′ is a Boolean model with parameters (λ+η, ν, d). Therefore, for any α ∈ [M, 10M ],

Πλ+η(α) ≤ Πλ(α) + P
(
one of the random balls of Σ′ is centered in B(0, 10α)

)
≤ Πλ(α) + ηvd(10α)d

≤ Πλ(α) + ηvd(100M)d
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where vd denotes the volume of the unit ball of Rd. As a consequence, for η ∈ (0, 1) small
enough, for any α ∈ [M, 10M ],

KΠλ+η(α) ≤ 1

2
.

From (30) and η ≤ 1 we also get

(λ+ η)K2ε(M) ≤ 1

4
.

By Lemma 14, we then deduce the convergence of Πλ+η(α) to 0 as α tends to∞. In other
words, λ+ η belongs to I. �

B Asymptotic behaviour of T (x)/‖x‖
In this section we prove Theorem 1. The plan of proof is standard and the proof

is actually particularly simple thanks to good upper bounds on T . Let us first state
Kingman’s theorem. We choose to state this theorem as Kesten in [10] (see Theorem
2.1), following the statement proposed by Liggett in [11].

Theorem 15 Suppose (Xm,n, 0 ≤ m < n) (m and n are integer) is a family of random
variables satisfying:

1. For all integers m,n such that 0 < m < n, one has X0,n ≤ X0,m +Xm,n,

2. For each m ≥ 0, the distribution of (Xm+h,m+h+k, k ≥ 1) does not depend on the
integer h ≥ 0,

3. For each k ≥ 1, the sequence (Xnk,(n+1)k, n ≥ 0) is stationary and ergodic,

4. E(X+
0,1) <∞ and there exists a real c such that, for all natural integer n, one has

E(X0,n) ≥ −cn.

Then

lim
n→∞

X0,n

n
= γ a.s. and in L1

where γ is the finite constant defined by

γ = inf
n

E(X0,n)

n
.

Let x ∈ S(1). We apply Kingman’s theorem to the family defined by Xm,n =
T (mx, nx).

— For any a, b, c ∈ Rd, T (a, c) ≤ T (a, b) +T (b, c). This follows from the fact that the
concatenation of a path from a to b and a path from b to c is a path from a to c.
Therefore the first assumption of Kingman’s theorem holds.

— The process X is stationary and ergodic under the action of spatial translations.
Therefore the second and third assumptions of Kingman’s theorem hold.

— For any a, b ∈ Rd,
0 ≤ T (a, b) ≤ ‖b− a‖. (31)

Therefore the forth assumption holds.
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Thus,

lim
n→∞

T (0, nx)

n
= µ(x) a.s. and in L1.

By isotropy of the model, we get that µ does not depend on x ∈ S(1). Therefore we drop
the dependence on x and write µ. We have proven

for all x ∈ S(1), lim
n→∞

T (0, nx)

n
= µ(x) a.s. and in L1. (32)

Now we prove the uniformity of the convergence. For any real u, we denote by buc its
integer part and by {u} its fractional part. In particular, u = buc+ {u}. Let ε > 0. Let
A be a finite subset of S(1) such that any point of S(1) is at most at distance ε of some
point of A. By (32), with probability one, there exists N such that for any n ≥ N and
for any x ∈ A, ∣∣∣∣T (0, nx)

n
− µ

∣∣∣∣ ≤ ε.

Let y ∈ Rd \ {0}. Write

ŷ =
1

‖y‖
y and n(y) = b‖y‖c. (33)

We assume n(y) ≥ N and n(y)ε ≥ 1. Let x ∈ A be such that ‖ŷ − x‖ ≤ ε. By triangle
inequality for T and by (31) we get

|T (0, y)− T (0, n(y)x)| ≤
∣∣T (0, y)− T

(
0, n(y)ŷ

)∣∣+
∣∣T(0, n(y)ŷ

)
− T (0, n(y)x

)∣∣
≤ ‖y − n(y)ŷ‖+ ‖n(y)ŷ − n(y)x‖
≤ 1 + n(y)ε

≤ 2n(y)ε.

Moreover, as n(y) ≥ N , we also have |T (0, n(y)x)− n(y)µ| ≤ n(y)ε. Therefore

|T (0, y)− n(y)µ|
n(y)

≤ 3ε.

The almost sure convergence in Theorem 1 follows. The convergence in L1 is a straight-
forward consequence of the a.s. convergence and the dominated convergence with the
domination T (0, y)/‖y‖ ≤ 1 for every y ∈ Rd \ {0}.
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[7] Jean-Baptiste Gouéré. Subcritical regimes in some models of continuum percolation.
Ann. Appl. Probab., 19(4):1292–1318, 2009.
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