Multiple features learning via rotation strategy - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Multiple features learning via rotation strategy

Résumé

Images are usually represented by different groups of features , such as color, shape and texture attributes. In this paper, we propose a classification approach that integrates multiple features, such as spectral and spatial information. We refer this approach to multiple feature learning via rotation (MFL-R) strategy, which adopt a rotation-based ensemble method by using a data transformation approach. Five data transformation methods, including principal component analysis (PCA), neighborhood preserving embedding (NPE), linear local tangent space alignment (LLTSA), linearity preserving projection (LPP) and multiple feature combination via manifold learning and patch alignment (MLPA) are used in the MFL-R framework. Experimental results over two hy-perspectral remote sensing images demonstrate that MFL-R with MLPA gains better performances and is not sensitive to the tuning parameters.
Fichier principal
Vignette du fichier
Xia16_ICIP.pdf (1.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01379724 , version 1 (12-10-2016)

Identifiants

Citer

Junshi Xia, Lionel Bombrun, Yannick Berthoumieu, Christian Germain. Multiple features learning via rotation strategy. IEEE International Conference on Image Processing (ICIP 2016), Sep 2016, Phoenix, AZ, United States. pp.2206 - 2210, ⟨10.1109/ICIP.2016.7532750⟩. ⟨hal-01379724⟩
48 Consultations
103 Téléchargements

Altmetric

Partager

More