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ABSTRACT

Images are usually represented by different groups of fea-
tures, such as color, shape and texture attributes. In this paper,
we propose a classification approach that integrates multiple
features, such as spectral and spatial information. We refer
this approach to multiple feature learning via rotation (MFL-
R) strategy, which adopt a rotation-based ensemble method
by using a data transformation approach. Five data trans-
formation methods, including principal component analysis
(PCA), neighborhood preserving embedding (NPE), linear
local tangent space alignment (LLTSA), linearity preserv-
ing projection (LPP) and multiple feature combination via
manifold learning and patch alignment (MLPA) are used in
the MFL-R framework. Experimental results over two hy-
perspectral remote sensing images demonstrate that MFL-R
with MLPA gains better performances and is not sensitive to
the tuning parameters.

Index Terms— Multiple feature learning, Rotation strat-
egy, Ensemble learning, Classification

1. INTRODUCTION

Supervised classification is a task of primary importance for a
wide range of practical applications in various image datasets
(e.g., remote sensing and medical images) [1–4]. Recently,
ensemble learning or multiple classifier systems (MCSs) have
shown to be of the great capacity in improving the classifica-
tion performances [5–7]. One of the current state-of-the-art
MCSs method is the Rotation Forest (RoF), which is an en-
semble of decision trees (DTs) [8]. RoF applies data trans-
formation technique (i.e., principal component analysis) into
the disjoint subsets split by the original features to obtain the
sparse rotation matrix, which is used to create the new fea-
tures of DT. Since the sparse rotation matrix is very diverse
among the different DTs, RoF improves both accuracy and
diversity within the ensemble [8]. Although RoF provides ex-
cellent performance in the previous studies [8–12], they focus
only on a single kind of feature.

Supervised classification with only one kind of features
might not be sufficient to obtain reliable results. Instead, the
combination of multiple features (e.g., texture and shape at-
tributes) can contribute to a more comprehensive interpreta-
tion of the scene. For instance, texture of signatures cannot

differentiate between objects made of the same materials (e.g.
roofs and roads made with the same asphalt), while they may
be easily distinguished by their shapes [13].

Two well-known strategies to combine multiple features
are the parallel and concatenated combinations [14, 15]. The
former fuses the results generated by the independent clas-
sifiers with different features, while the latter integrates the
features into one vector and then obtains the result via a clas-
sifier. The parallel combination keeps low the dimensionality
of the input features. However, its performance depends on
the diversity among the features. In the concatenated combi-
nation, stacking the features may yield to redundant informa-
tion, making it difficult to select an optimal combination of
features. Furthermore, the high dimensionality of the stacked
features, as well as the limited number of training samples,
provokes the curse of dimensionality, thus resulting in lower
classification accuracy [14, 15].

In order to alleviate these problems, Fauvel et al. [16] and
Ghamisi et al. [17] applied supervised dimensionality reduc-
tion techniques on both spectral and spatial features, and then
stacked the reduced spectral and spatial features together.
However, supervised dimensionality reduction methods suf-
fer from the limited number of available training samples. To
overcome this, Liao et al. [13] proposed a joint data fusion
and dimension reduction, namely graph-based data fusion
(GDF), for the classification of multi-sensors data. Zhang et
al. [18] developed a unified framework based on manifold
learning and patch alignment (MLPA) to linearly combine
multiple features. However, the number of extracted features
in [13] and [18] is hard to determine, which needs to be
further investigated.

Inspired by the idea of the RoF, the main contribution of
the paper is to propose a robust classification framework that
combines multiple features based on rotation-based ensem-
ble. We refer it to multiple feature learning via rotation strat-
egy (MFL-R). In this framework, we first split different kinds
of features into several disjoint subsets and apply the data
transformation method to each subset. Five data transforma-
tion methods, including principal component analysis (PCA),
neighborhood preserving embedding (NPE) [19], linear local
tangent space alignment (LLTSA) [20], linearity preserving
projection (LPP) [21] and multiple features combination via
manifold learning and patch alignment (MLPA) [18] are con-
sidered. Second, new training set for the decision tree (DT)



Fig. 1. Flowchart of the proposed framework.

classifier are formed by concatenating the extracted features
contained in each subset. Furthermore, two hyperspectral re-
mote sensing images are used to validate the performances
of the proposed approach. Experiments suggest the effective-
ness of the proposed framework, especially with MLPA.

The remaining of this paper is organized as follows. The
proposed MFL-R is described in Section 2. Section 3 presents
an application to hyperspectral remote sensing image classifi-
cation. Conclusions and perspectives are drawn in Section 4.

2. PROPOSED CLASSIFICATION FRAMEWORK

The proposed MFL-R framework is based on the rotation-
based ensemble that aims at generating diverse individual
classification results using random feature selection and data
transformation technique, which improves individual accu-
racy and diversity within the ensemble simultaneously [8–10].

Let X =
{

Xj
}m
j=1

(
Xj =

{
xji
}n
i=1

)
denote m kinds of

features of training samples with the corresponding label Y =

{yi}ni=1, where xji ∈ RDj

and yi ∈ {1, ..., C} denotes the
label information, where C is the total number of classes.

The steps of MFL-R (as shown in Fig. 1) are detailed in
the following.

• The first step consists in splitting each kind of feature
space into K disjoint subsets. A subset of each kind of
features contain

⌊
Dj/K

⌋
, j = 1, ..,m features. In this

case, there are different features in each subset, result-
ing in generating different new features by using data
transformation in the next step.

• In the second step, the data transformation is applied to
each subset to create new features. This step aims at
producing discriminant and decorrelate features, which
are beneficial with the classifier. In this work, PCA,
LLTSA, LPP, NPE and MLPA are considered.

• In the third step, the new features are formed by con-
catenating the extracted components (the size of d) in
each subset and then are used to train an individual DT
classifier. Classification and regression tree (CART)
with Gini index as the split function is considered.

• The final result is produced by integrating the individ-
ual DT classifiers that are generated by repeating the
above steps T times.

Since PCA, LLTSA [20], LPP [21] and NPE [19] are well-
known approaches, interested reader can find more details in
their original reference. In the following, we give the gen-
eral description of MLPA. MLPA aims at preserving the local
geometric properties of the features and produces the new fea-
tures by simultaneously optimizing the weights in the follow-
ing objective function constructed by multiple features [18].

argmin
Z,ω

m∑
i=1

ωri tr
(
ZMiZ>

)
s.t. ωi > 0,

m∑
i=1

ωi = 1 (1)

M = Q−W (2)

Qii =

n∑
j=1

W(i, j) (3)



Table 1. Overall, average, κ and class-specific accuracies obtained for the Indian Pines AVIRIS image

Class No of Samples Single feature Combination MFL-R
Train Test Spec SG EMPs Concatenated Parallel PCA LPP LLTSA NPE MLPA

Alfalfa 10 44 71.67 67.04 89.63 88.70 89.63 92.78 93.89 92.41 93.52 95.74
Corn-no till 10 1514 27.75 20.31 62.20 57.36 64.27 64.06 65.70 68.69 67.79 66.70

Corn-min till 10 824 26.86 26.75 63.25 58.05 52.88 71.13 70.25 68.74 70.29 75.22
Bldg-Grass-Tree-Drives 10 224 36.41 41.28 84.10 72.22 62.35 89.79 93.63 93.68 91.58 94.02

Grass/pasture 10 487 55.79 39.13 83.32 74.97 77.18 83.58 82.31 82.07 80.10 84.39
Grass/trees 10 737 44.94 46.93 76.12 73.43 67.82 89.29 82.85 88.30 82.05 82.30

Grass/pasture-mowed 10 16 75.77 79.62 92.69 94.23 88.46 97.69 99.23 99.62 98.08 98.08
Corn 10 479 52.35 44.81 89.65 87.71 66.99 96.50 98.20 98.75 99.02 98.73
Oats 10 10 83.00 82.00 95.50 93.00 94.50 100.00 98.50 99.50 100.00 99.50

Soybeans-no till 10 958 34.16 23.26 68.21 60.96 42.60 74.40 72.13 73.14 71.67 76.25
Soybeans-min till 10 2458 28.58 16.34 64.04 62.22 29.57 64.47 68.60 70.27 66.97 73.15

Soybeans-clean till 10 604 17.67 20.59 73.66 68.29 26.47 65.60 66.14 66.27 71.21 70.33
Wheat 10 202 82.97 58.54 91.37 91.60 87.74 96.13 98.58 99.20 99.01 99.10
Woods 10 1284 72.70 46.29 74.38 71.40 70.73 90.53 88.65 86.17 89.68 90.53

Hay-windrowed 10 370 37.39 35.47 87.21 85.08 51.79 92.82 95.24 96.05 92.08 95.71
Stone-steel towers 10 85 92.63 75.79 96.42 95.16 94.63 98.53 96.53 97.26 96.63 97.16

Overall accuracy (OA) 39.96 30.23 71.40 67.46 53.15 76.28 76.78 77.71 76.78 79.40
Average accuracy (AA) 52.54 45.26 80.74 77.15 66.73 85.46 85.65 86.26 85.60 87.31
kappa coefficients (κ) 33.70 23.77 68.01 63.65 48.15 73.40 73.86 74.90 73.90 76.83

Table 2. OAs, AAs, κ obtained for the Salinas AVIRIS image.
Single feature Combination MFL-R

Spec SG EMPs Concatenated Parallel PCA LPP LLTSA NPE MLPA
OA 73.94 68.71 82.40 75.69 81.64 87.19 89.56 88.41 88.19 91.87
AA 83.78 76.58 90.18 83.13 87.80 92.21 94.08 93.42 92.96 95.49
κ 71.90 66.62 80.28 75.18 79.29 86.51 88.48 87.87 86.77 91.22

W(i, j) = exp(−‖xi − xj‖2 /t) (4)

where, ωi and Mi are respectively the weight and the align-
ment matrix of the ith kind of features. m is the number of
kinds of features. r > 1 is a control parameter. t is a radius
parameter.

Since it is impossible to find a global optimal solution of
Z and ω in (1), an alternating optimization is used to obtain
a local optimal solution by iteratively updating Z and ω [18].
Thus, Z is calculated by initializing the same weights to each
kind of feature and repeating updating Z and ω until conver-
gence. Then, V is achieved by using the linear regression
model

V = (X>X)−1X>Z (5)

In this work, the proposed MFL-R framework with PCA,
LLTSA, LPP, NPE and MLPA data transformation are named
respectively MFL-R-PCA, MFL-R-LLTSA, MFL-R-LPP,
MFL-R-NPE and MFL-R-MLPA.

3. APPLICATIONS TO HYPERSPECTRAL IMAGE
CLASSIFICATION

In this section, two hyperspectral remote sensing images
are used to evaluate the proposed framework. They are
recorded by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor over the Indian Pines in Northwestern
Indiana and Salinas Valley, California, USA. The former is

composed of 145 × 145 pixels with 220 spectral bands (spa-
tial resolution: 20 m), while the latter comprises 512 × 217
samples with 224 spectral bands (spatial resolution: 3.7 m)

In the proposed framework, three kinds of features, in-
cluding spectral, spectral gradient (SG) and extended mor-
phological profiles (EMPs) [22] are utilized. SG is a surface
reflectance descriptor which is obtained by subtracting the
neighbor features. EMPs is formed by stacking all the com-
puted morphological profiles (MPs), which perform opening
and closing by reconstruction with different sizes of structural
element (SE) on the first few components extracted from the
image [22]. For Indian Pines, the dimensionality of spectral,
SG and EMPs are 220, 219 and 183. For Salinas, the dimen-
sionality of spectral, SG and EMPs are 224, 223 and 204.

Ten samples per class are randomly selected to form the
training set and the rest of the pixels are used for testing. It is
emphasized that the classification problem is very challeng-
ing with a very limited number of training samples. The re-
sults are obtained after ten repetitions. In this experiment, the
number of classifiers (T ), subsets (K) and extracted features
in each subset (d) are set to be 20, 5 and 10, respectively. Ta-
bles 1 and 2 presents the classification accuracies of the pro-
posed method, as well as the ones obtained for the single kind
of features, parallel and concatenated combination. In par-
ticular, parallel combination integrates the classification re-
sults obtained for three kinds of features. Concatenated com-
bination stacks the three kinds of features together and then
classifies via the DT classifier. It can be seen from the two
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Fig. 2. Indian Pines AVIRIS image. Effects of (a) different numbers of training samples. (b) Number of subsets (K). (c)
Number of components (d) kept in each subset.

Table 3. OAs (in Percent), AOAs (in Percent) and Diversities
obtained for Indian Pines AVIRIS Image

Methods MFL-R
PCA LLTSA LPP NPE MLPA

OA 76.28 76.78 77.71 76.78 79.40
AOA 68.71 68.87 69.01 68.52 70.47

Diversity 0.51 0.51 0.53 0.52 0.54

tables that the parallel and concatenated combination cannot
improve the classification performance and gain worse per-
formance than EMPs since they suffer from the limited num-
ber of training samples. The proposed method reports signif-
icantly better performance than other approaches. MFL-R-
LLTSA, MFL-R-LPP and MFL-NPE perform slightly better
than MFL-R-PCA because they consider local information in
the data transformation process [10]. MFL-R-MLPA yields to
the best results due to the fact that MLPA considers the statis-
tical properties of each feature to achieve a physically mean-
ingful unified low-dimensional representation of multiple fea-
tures, which is beneficial for improving the performance [18].
Moreover, we use the percentage average overall accuracies
of the individual DT classifier, ”AOA (%)”, and the coincident
failure diversity (CFD) [14] to analyze the proposed method
(seen in Table 3). A higher value of CFD means a stronger en-
semble. MFL-R-MLPA outperforms MFL-R with other data
transformation approaches due to the higher accuracies and
diversity among the member classifiers.

The last part of our experiments focuses on the sensitiv-
ity analysis of the number of training samples and the tuning
parameters in the proposed method. Fig. 2(a) shows the ef-
fect of the number of training samples. For the minor classes
(Grass/pasture-mowed and Oats), the number of training sam-
ples remains constant (10 samples). From Fig. 2(a), the over-
all accuracy increases monotonically as the size of the train-

ing set increases and the MFL-R-MLPA gives the best results
in all cases. The number of subsets (K) and extracted fea-
tures in each subset (d) are the key parameters of the pro-
posed framework. The effects of K and d are depicted in
Fig. 2(b) and (c). There is no pattern of dependency between
K and the accuracy. Larger values of d result in higher ac-
curacies of MFL-R-PCA, MFL-R-LLTSA, MFL-R-LPP and
MFL-R-NPE. However, MFL-R-MLPA is stable with this pa-
rameter. Hence, selection of parameters is not very critical for
the MFL-R-MLPA, which is an important added advantage.

4. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose a novel classification framework
with multiple features, namely multiple feature learning via
rotation strategy (MFL-R). The main idea of MFL-R is based
on rotation-based ensemble with data transformation. Five
data transformation technqiues, including PCA, LLTSA, LPP,
NPE and MLPA are considered. Experimental results on two
hyperspectral remote sensing images show that the proposed
method leads to significant improvement than traditional par-
allel and concatenated combination. Among them, MFL-R-
MLPA achieves the best performances and is not sensitive to
the parameters. Thus, we promote the use of MLPA in the
proposed MFL-R framework.

In the future, we would like to further investigate the po-
tential of MFL-R to classify other kinds of features.
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