Semantic Segmentation via Multi-task, Multi-domain Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Semantic Segmentation via Multi-task, Multi-domain Learning

Rémi Emonet
Elisa Fromont
Damien Muselet
Alain Trémeau
  • Fonction : Auteur
  • PersonId : 859601

Résumé

We present an approach that leverages multiple datasets possibly annotated using different classes to improve the semantic segmentation accuracy on each individual dataset. We propose a new selective loss function that can be integrated into deep networks to exploit training data coming from multiple datasets with possibly different tasks (e.g., different label-sets). We show how the gradient-reversal approach for domain adaptation can be used in this setup. Thorought experiments on semantic segmentation applications show the relevance of our approach.
Fichier principal
Vignette du fichier
Semantic_Segmentation_via_Multi-task_Multi-domain_Learning.pdf (697.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01376998 , version 1 (06-10-2016)

Identifiants

  • HAL Id : hal-01376998 , version 1

Citer

Damien Fourure, Rémi Emonet, Elisa Fromont, Damien Muselet, Alain Trémeau, et al.. Semantic Segmentation via Multi-task, Multi-domain Learning. S+SSPR 2016 The joint IAPR International Workshops on Structural and Syntactic Pattern Recognition (SSPR 2016) and Statistical Techniques in Pattern Recognition (SPR 2016) , Nov 2016, Merida, Mexico. ⟨hal-01376998⟩
384 Consultations
778 Téléchargements

Partager

More