ON THE WEAK APPROXIMATION OF A SKEW DIFFUSION BY AN EULER-TYPE SCHEME - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2018

ON THE WEAK APPROXIMATION OF A SKEW DIFFUSION BY AN EULER-TYPE SCHEME

Résumé

We study the weak approximation error of a skew diffusion with bounded measurable drift and Hölder diffusion coefficient by an Euler-type scheme, which consists of iteratively simulating skew Brownian motions with constant drift. We first establish two sided Gaussian bounds for the density of this approximation scheme. Then, a bound for the difference between the densities of the skew diffusion and its Euler approximation is obtained. Notably, the weak approximation error is shown to be of order h η/2 , where h is the time step of the scheme, η being the Hölder exponent of the diffusion coefficient.
Fichier principal
Vignette du fichier
Weak_error_skew_diff.pdf (421.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01373949 , version 1 (29-09-2016)

Identifiants

Citer

N Frikha. ON THE WEAK APPROXIMATION OF A SKEW DIFFUSION BY AN EULER-TYPE SCHEME. Bernoulli, 2018, 24 (3), pp.1653-1691. ⟨10.3150/16-BEJ909⟩. ⟨hal-01373949⟩
153 Consultations
96 Téléchargements

Altmetric

Partager

More