Real-time wind power forecast - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Real-time wind power forecast

Aurélie Fischer
  • Fonction : Auteur
  • PersonId : 989743
Lucie Montuelle
Mathilde Mougeot
Dominique Picard

Résumé

We focus on short-term wind power forecast using machine learning techniques. We show on real data provided by the wind energy company Maia Eolis, that parametric models, even following closely the physical equation relating wind production to wind speed are out-performed by intelligent learning algorithms. In particular, the CART-Bagging algorithm gives very stable and promising results. Besides, we show on this application that the default methodology to select a subset of predictors provided in the standard random forest package can be refined, especially when there exists among the predictors one variable which has a major impact.
Fichier principal
Vignette du fichier
WindProdForecast2016-08-24.pdf (184.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01373429 , version 1 (30-09-2016)
hal-01373429 , version 2 (11-01-2018)

Identifiants

Citer

Aurélie Fischer, Lucie Montuelle, Mathilde Mougeot, Dominique Picard. Real-time wind power forecast. 2016. ⟨hal-01373429v1⟩
208 Consultations
1220 Téléchargements

Altmetric

Partager

More