Exact Bayesian smoothing in triplet switching Markov chains - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Exact Bayesian smoothing in triplet switching Markov chains

Résumé

Bayesian smoothing in conditionally linear Gaussian models, also called jump-Markov state-space systems, is an NP-hard problem. As a result, a number of approximate methods - either deterministic or Monte Carlo based- have been developed. In this paper we address the Bayesian smoothing problem in another triplet Markov chain model, in which the switching process R is not necessarily Markovian and the additive noises do not need to be Gaussian.We show that in this model the smoothing posterior mean and covariance matrix can be computed exactly with complexity linear in time
Fichier principal
Vignette du fichier
C94.pdf (107.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01365911 , version 1 (13-09-2016)

Identifiants

  • HAL Id : hal-01365911 , version 1

Citer

Wojciech Pieczynski, François Desbouvries. Exact Bayesian smoothing in triplet switching Markov chains. S. Co. 2009 : Complex Data Modeling and Computationally Intensive Statistical Methods for Estimation and Prediction , Sep 2009, Milan, Italy. ⟨hal-01365911⟩
66 Consultations
59 Téléchargements

Partager

More