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ABSTRACT. Bayesian smoothing in conditionally linear Gaussian models, also called jump-Markov
state-space systems, is an NP-hard problem. As a result, a number of approximate methods - either de-
terministic or Monte Carlo based- have been developed. In this paper we address the Bayesian smooth-
ing problem in another triplet Markov chain model, in which the switching process R is not necessarily
Markovian and the additive noises do not need to be Gaussian. We show that in this model the smoothing
posterior mean and covariance matrix can be computed exactly with complexity linear in time.

1 INTRODUCTION

Let X1:N = (X1, · · · ,XN) be a hidden random sequence with values in Rq, Y1:N = (Y1, · · · ,YN)
an observed random sequence with values in Rm. One often says that ”X1:N is only observed
through Y1:N” or that ”Y1:N is a noisy version of X1:N . According to the latter viewpoint, the
distribution p(y1:N |x1:N) of y1:N conditional on x1:N is sometimes called the ”noise distribu-
tion”. Let also R1:N = (R1, · · · ,RN) be an unobserved discrete random sequence with values
in a finite set S = {1, · · · ,s} which models the random changes of regime - or switches -
of the distribution of (Xn,Yn). The three chains are linked via some probability distribution
p(x1:N ,r1:N ,y1:N), which should be designed in such a way that physical situations of interest
are rather well fitted, and on the other hand estimating the couple (x1:N ,r1:N) (or only the
sequence x1:N) from the observed sequence y1:N is computationally feasible. More precisely,
the particular Bayesian smoothing problem which we address here consists in computing, for
each N = 1,2, · · · and each n,1 ≤ n ≤ N, the conditional expectation E(Xn|Y1:N = y1:N) (or,
in short, E(Xn|y1:N)) and associated conditional covariance matrix Cov(Xn|Y1:N = y1:N) (also
denoted by Cov(Xn|y1:N)). The contribution of this paper consists in showing that E(Xn|y1:N)
and Cov(Xn|y1:N) can be computed exactly, with complexity linear in time, in the recent model
proposed in Pieczynski (2009).

2 MARKOV MARGINAL SWITCHING HIDDEN MODEL (MMSHM)

Let us first consider the classical conditionally linear Gaussian model, also called jump-
Markov state-space system, which consists in considering that R1:N is a Markov chain and,



roughly speaking, that conditionally on R1:N , the couple (X1:N ,Y1:N) is the classical Gaussian
dynamic linear system. This is summarized in the following :

R1:N is a Markov chain; (1)
Xn+1 = Fn(Rn)Xn +Wn; (2)

Yn = Hn(Rn)Xn +Zn, (3)

where matrices Fn(Rn) and Hn(Rn) depend on Rn, W1, · · · ,WN are Gaussian vectors in Rq,
Z1, · · · ,ZN are Gaussian vectors in Rm, and X1,W1, · · · ,WN ,Z1, · · · ,ZN are independent. Let
us notice that variables Wn and Zn can also depend on Rn; however, we will keep model
(1)-(3) for sake of simplicity. For fixed R1 = r1, · · · ,Rn = rn, E(Xn|y1:N) can be computed
by classical Kalman-like smoothing methods (see e.g. Ait-el-Fquih and Desbouvries (2008)
and references therein). However, it has been well known since Tugnait (1982) that exact
computation is no longer possible with random Markov R1:N and different approximations
must be used, see e.g. Andrieu et al. (2003), Cappé et al. (2005), Costa et al. (2005), Giordani
et al. (2007), Ristic et al. (2004), Zoeter and Heskes (2006). To remedy this, different models
have been recently proposed in Pieczynski (2009). The core novelty of these models with
respect to the classical one (1)-(3) is that the couple (R1:N ,Y1:N) is Markovian, which in turn
ensures that one can compute p(yn+1|y1:n). This is a key computational point because the
impossibility of filtering and smoothing in model (1)-(3) comes from the fact that p(yn+1|y1:n)
cannot be computed exactly (see Andrieu et al. (2003), Tugnait (1982)). Let us thus consider
the following model, first introduced in Pieczynski (2009) :

Definition

The triplet (X1:N ,R1:N ,Y1:N) will be called a ”Markov marginal switching hidden model”
(MMSHM) if:

(R1:N ,Y1:N) is a Markov chain; (4)
Xn+1 = Fn(Rn,Yn)Xn +Wn, (5)

where matrix Fn(Rn,Yn) depends on (Rn,Yn), W1, · · · ,Wn are independent zero-mean random
vectors in Rq such that Wn is independent from (R1:N ,Y1:N) for each n, 1≤ n≤ N. Note that
variables W1, · · · ,Wn are not necessarily Gaussian and do not necessarily have a covariance
matrix. This model is an extension of the early model proposed in Pieczynski (2008).

In (4) the chain R1:N does not need to be Markovian, which is the reason why we call (4)-
(5) a ”Markov marginal switching” model and not a ”Markov switching” model. As studied in
Derrode and Pieczynski (2004), such a Markov chain (R1:N ,Y1:N) can be much more complex,
and much more efficient in unsupervised hidden discrete data segmentation, than the classical
hidden Markov chain (HMC), in which R1:N is Markovian. Theoretical results specifying
under which conditions on a Markov chain (R1:N ,Y1:N) the chain R1:N is Markovian can be
found in Pieczynski (2007).

Finally, in the classical Markov switching model (1)-(3) R1:N is Markovian and (R1:N ,Y1:N)
is not, while in the MMSHM (4)-(5) (X1:N ,R1:N) is not necessarily Markovian but (R1:N ,Y1:N)
is. From a modeling point of view, it does not seem to appear clearly why any of these prop-
erties should fit real situations better than the other; however, from a computational point of



view the possibility of exact calculations is a clear advantage of the MMSHM model over the
classical Markov-switching model : as we now see, in (4)-(5) E(Xn|y1:N) and Cov(Xn|y1:N)
can be computed exactly with a computational cost linear in the time index N.

3 EXACT BAYESIAN SMOOTHING IN MMSHM

Let us consider an MMSHM (X1:N ,Y1:N ,R1:N). Let us set, for 1≤ n≤ N−1 :

E(Xn+1,rn|y1:N) = E(Xn+1|rn,y1:N)p(rn|y1:N); (6)
E(Xn+1XT

n+1,rn|y1:N) = E(Xn+1XT
n+1|rn,y1:N)p(rn|y1:N). (7)

Of course, we have

E(Xn+1|y1:N) = ∑
rn

E(Xn+1,rn|y1:N), (8)

Cov(Xn+1|y1:N) = ∑
rn

E(Xn+1XT
n+1,rn|y1:N)−E(Xn+1|y1:N)E(Xn+1|y1:N)T , (9)

and thus it is sufficient to compute E(Xn+1,rn|y1:N) and E(Xn+1XT
n+1,rn|y1:N). In the follow-

ing proposition we show that E(Xn+1,rn|y1:N) and E(Xn+1XT
n+1,rn|y1:N) can be computed

with complexity linear in time :

Proposition 1.

Let (X1:N ,Y1:N ,R1:N) be an MMSHM with given transitions p(rn+1,yn+1|rn,yn). Then E(Xn+1,rn|y1:N)
can be computed with linear complexity in time index N in the following way :

• Compute p(r1|y1:N) and p(rn|rn−1,y1:N) for 2≤ n≤ N as

p(r1|y1:N) =
β1(r1)

∑r1 β1(r1)
, p(rn|rn−1,y1:N) =

βn(rn)
βn−1(rn−1)

, (10)

where βn(rn) are computed by the backward recursions

βN(rN) = 1,βn−1(rn−1) = ∑
rn

p(rn,yn|rn−1,yn−1)βn(rn); (11)

• For 2≤ n≤ N, compute p(rn|y1:N) by the forward recursion

p(rn+1|y1:N) = ∑
rn

p(rn|y1:N)p(rn+1|rn,y1:N); (12)

• Compute E(Xn+1,rn|y1:N) from E(Xn,rn−1|y1:N) by the recursion :

E(Xn+1,rn|y1:N) = Fn(rn,yn) ∑
rn−1

E(Xn,rn−1|y1:N)p(rn|rn−1,yn−1:N). (13)



If, in addition, the covariance matrices Σ1, · · · ,ΣN of W1, · · · ,WN exist, then E(Xn+1XT
n+1,rn|y1:N)

satisfies

E(Xn+1XT
n+1,rn|y1:N) = Fn(rn,yn)[ ∑

rn−1

E(XnXT
n ,rn−1|y1:N)p(rn|rn−1,yn−1:N)]FT

n (rn,yn)

+ Σn p(rn|y1:N), (14)

and thus Cov(Xn+1|y1:N) can also be computed with linear complexity in time index N.

Proof.

(10)-(12) extend from hidden to Pairwise Markov chains (R1:N ,Y1:N) (Derrode and Pieczynski
(2004), Pieczynski (2007)) the classical calculations (Baum and Petrie (1966), Baum and
Eagon (1967)). We now address (13). By assumption, Xn+1 = Fn(Rn,Yn)Xn +Wn. Since Wn
and (Rn,Y1:N) are independent, and Wn is zero-mean, we have

E(Xn+1|rn,y1:N) = Fn(rn,yn)E(Xn|rn,y1:N)
= Fn(rn,yn) ∑

rn−1

E(Xn|rn−1,rn,y1:N)p(rn−1|rn,y1:N). (15)

On the other hand, from model (4)-(5) E(Xn|rn−1,rn,y1:N) = E(Xn|rn−1,y1:N), and thus

E(Xn+1|rn,y1:N) = Fn(rn,yn) ∑
rn−1

E(Xn|rn−1,y1:N)p(rn−1|rn,y1:N). (16)

Multiplying both sides by p(rn|y1:N) gives (13). Equation (14) is shown similarly : the inde-
pendence of W1, · · · ,WN implies that Xn and Wn are independent conditionally on (R1:N ,Y1:N),
so (5) gives

E(Xn+1XT
n+1|rn,y1:N) = Fn(rn,yn)E(XnXT

n |rn,y1:N)FT
n (rn,yn)+E(WnW T

n |rn,y1:N)

= Fn(rn,yn)E(XnXT
n |rn,y1:N)FT

n (rn,yn)+Σn. (17)

On the other hand,

E(XnXT
n |rn,y1:N) = ∑

rn−1

E(XnXT
n ,rn−1|rn,y1:N)

= ∑
rn−1

E(XnXT
n |rn−1,y1:N)p(rn−1|rn,y1:N).

Injecting into (17) and multiplying by p(rn|y1:N) gives (14), which ends the proof.

Remarks.

• As far as estimating Xn+1 (and not Rn+1) is concerned, our method enables us to compute
E(Xn+1|y1:N) and Cov(Xn+1|y1:N), but not the distribution p(xn+1|y1:N), which indeed is
a very rich mixture distribution. We thus solve the Bayesian smoothing problem for the
loss function L(x1,x2) = ||x1− x2||2 only. Note however that this problem remains of
interest, and indeed the quadratic loss function is used in many applications;



• Let now the problem consist in estimating simultaneously Xn+1 and Rn+1. Then our
method enables us to compute the exact Bayesian solution associated to the family of
loss functions

L((x1,r1),(x2,r2)) = ||x1− x2||2L′(r1,r2) (18)

in which L′ is arbitrary. To see this, let us notice that for a given y1:N , the Bayesian
estimator (x̂n, r̂n) associates to y1:N the couple (x̂n, r̂n) which minimizes the function :

(xn,rn) 7→∑
r′n

∫
Rq

L((xn,rn),(x′n,r
′
n))p(x′n,r

′
n|y1:N)dx′n.

Given (18), the couple (x̂n, r̂n) minimizes

(xn,rn) 7→
∫

Rq
||xn− x′n||2[∑

r′n

L′(rn,r′n)p(r′n|y1:N)p(x′n|r′n,y1:N)]dx′n.

For fixed rn, the minimum of this function is reached for

x̂n(rn) = ∑
r′n

L′(rn,r′n)p(r′n|y1:N)
∑r′n L′(rn,r′n)p(r′n|y1:N)

E(Xn|r′n,y1:N), (19)

which can be computed because p(rn|y1:N) and E(Xn|r′n,y1:N) can both be computed in
(4)-(5). Thus we can first search r̂n which minimizes rn 7→ x̂n(rn) in (19), and finally set
x̂n = E(Xn|r̂n,y1:N).
Let us finally remark that in case we are only interested in the Bayesian estimation of
Rn+1, then the arbitrary loss function L′(r1,r2) in (19) leads to the solution r̂∗n which
minimizes the function rn 7→ ∑r′n L′(rn,r′n)p(r′n|y1:N), and thus r̂∗n differs from r̂n.
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