Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts - Archive ouverte HAL
Article Dans Une Revue Kinetic and Related Models Année : 2019

Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts

Résumé

We study the asymptotic behaviour of the following linear growth-fragmentation equation $$\dfrac{\partial}{\partial t} u(t,x) + \dfrac{\partial}{\partial x} \big(x u(t,x)\big) + B(x) u(t,x) =4 B(2x)u(t,2x),$$ and prove that under fairly general assumptions on the division rate $B(x),$ its solution converges towards an oscillatory function, explicitely given by the projection of the initial state on the space generated by the countable set of the dominant eigenvectors of the operator. Despite the lack of hypo-coercivity of the operator, the proof relies on a general relative entropy argument in a convenient weighted $L^2$ space, where well-posedness is obtained via semigroup analysis. We also propose a non-dissipative numerical scheme, able to capture the oscillations.
Fichier principal
Vignette du fichier
BernardDoumicGabriel_final_hal.pdf (706.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01363549 , version 1 (09-09-2016)
hal-01363549 , version 2 (31-01-2017)
hal-01363549 , version 3 (01-11-2017)
hal-01363549 , version 4 (16-01-2018)
hal-01363549 , version 5 (17-11-2018)

Identifiants

Citer

Etienne Bernard, Marie Doumic, Pierre Gabriel. Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts. Kinetic and Related Models , 2019, 12 (3), pp.551-571. ⟨10.3934/krm.2019022⟩. ⟨hal-01363549v5⟩

Relations

1073 Consultations
481 Téléchargements

Altmetric

Partager

More