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Cyclic asymptotic behaviour of a population

reproducing by fission into two equal parts

Étienne Bernard ∗ Marie Doumic †‡ Pierre Gabriel §

November 19, 2018

Abstract

We study the asymptotic behaviour of the following linear growth-
fragmentation equation

B

Bt
upt, xq `

B

Bx

`

xupt, xq
˘

`Bpxqupt, xq “ 4Bp2xqupt, 2xq,

and prove that under fairly general assumptions on the division rate Bpxq,
its solution converges towards an oscillatory function, explicitely given by
the projection of the initial state on the space generated by the count-
able set of the dominant eigenvectors of the operator. Despite the lack of
hypocoercivity of the operator, the proof relies on a general relative en-
tropy argument in a convenient weighted L2 space, where well-posedness
is obtained via semigroup analysis. We also propose a non-diffusive nu-
merical scheme, able to capture the oscillations.

Keywords: growth-fragmentation equation, self-similar fragmentation, long-
time behaviour, general relative entropy, periodic semigroups, non-hypocoercivity

MSC 2010: (Primary) 35Q92, 35B10, 35B40, 47D06, 35P05 ; (Secondary)
35B41, 92D25, 92B25

Introduction

Over the last decades, the mathematical study of the growth-fragmentation
equation and its linear or nonlinear variants has led to a wide literature.

Several facts explain this lasting interest. First, variants of this equation
are used to model a wide range of applications, from the internet protocol suite
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to cell division or polymer growth; it is also obtained as a useful rescaling
for the pure fragmentation equation (then the growth rate is linear). Second,
despite the relative simplicity of such a one-dimensional equation, the study of
its behaviour reveals complex and interesting interplays between growth and
division, and a kind of dissipation even in the absence of diffusion. Finally, the
underlying stochastic process has also - and for the same reasons - raised much
interest, and only recently have the links between the probabilistic approach
and the deterministic one begun to be investigated.

In its general linear form, the equation may be written as follows

B

Bt
upt, xq `

B

Bx

`

gpxqu
˘

`Bpxqupt, xq “

8
ż

x

kpy, xqBpyqupt, yqdy, (GF)

where upt, xq represents the concentration of individuals of size x ě 0 at time t,
gpxq ě 0 their growth rate, Bpxq ě 0 their division rate, and kpy, xq ě 0 the
quantity of individuals of size x created out of the division of individuals of
size y.

The long-time asymptotics of this equation has been studied and improved
in many successive papers. Up to our knowledge, following the biophysical
pioneering papers [9, 8, 35], the first mathematical study was carried out
in [15], where the equation was considered for the mitosis kernel / binary fis-
sion (kpy, xq “ 2δx“ y2 ) in a compact set x P rα, βs. The authors proved the
central behaviour of the equation, already conjectured in [9]: under balance
and regularity assumptions on the coefficients, there exists a unique dominant
eigenpair pUpxq ě 0, λ ą 0q such that upt, xqe´λt Ñ Upxq in a certain sense,
with an exponential speed of convergence. In [15], the proofs were based on
semigroup methods and stated for the space of continuous functions provided
with the supremum norm. Many studies followed: some of them, most notably
and recently [31], relaxing the previous assumptions in the context of semigroup
theory [2, 5, 6, 7, 19, 22]; others deriving explicit solutions [25, 37, 38] or intro-
ducing new methods - one of the most elegant and powerful being the General
Relative Entropy [30], leading to convergence results in norms weigthed by the
adjoint eigenproblem. However, though in some cases the entropy method may
lead to an explicit spectral gap in some integral norm [34, 28, 32], or when the
coefficients are such that an entropy-entropy dissipation inequality exists [13, 3],
in general it fails to provide a rate of convergence.

On the margins of this central behaviour, some papers investigated non-
uniqueness [4] or other kinds of asymptotics, happening for instance when the
balance or mixing assumptions between growth and division fail to be satisfied:
e.g. when the fragmentation dominates the growth [6, 11, 12, 24, 16]. A stronger
“memory” of the initial behaviour may then be observed, contrary to the main
case, where the only memory of the initial state which remains asymptotically
is a weighted average.

Among these results, the case when the growth rate is linear, i.e. gpxq “ x,
and the mother cell divides into two equal offspring, i.e. kpy, xq “ 2δx“ x2 , holds
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a special place, both for modelling reasons - it is the emblematic case of idealised
bacterial division cycle, and also the rescaling adapted to the pure fragmentation
equation - and as a limit case where the standard results fail to be true. The
equation is then

$

’

&

’

%

B

Bt
upt, xq `

B

Bx

`

xupt, xq
˘

`Bpxqupt, xq “ 4Bp2xqupt, 2xq, x ą 0,

up0, xq “ uinpxq.

(1)

In 1967, G. I. Bell and E. C. Anderson already noted [9]:
”If the rate of cell growth is proportional to cell volume, then (...) a daughter cell,

having just half the volume of the parent cell, will grow at just half the rate of the

parent cell. It follows that if one starts with a group of cells of volume V , age r, at

time 0, then any daughter cell of this group, no matter when formed, will always have

a volume equal to half the volume of an undivided cell in the group. There will then

be no dispersion of cell volumes with time, and the population will consist at any time

of a number of cell generations differing by just a factor of 2 in volume. For more

general initial conditions, the population at late times will still reflect the initial state

rather than simply growing exponentially in time. ”

After [9], the reason for this specific behaviour was stated in [15, 26]: instead
of a unique dominant eigenvalue, there exists a countable set of dominant eigen-
values, namely 1 ` 2iπ

log 2Z. O. Diekmann, H. Heijmans and H. Thieme explain

in [15]:
The total population size still behaves like rets but convergence in shape does not

take place. Instead the initial size distribution turns around and around while

numbers are multiplied. (...) The following Gedanken experiment illustrates the bio-

logical reason. Consider two cells A and B with equal size and assume that at some

time instant t0 cell A splits into a and a. During the time interval rt0, t1s, a, a and B

grow and at t1 cell B splits into b and b. If gpxq “ cx, the daughter cells a and b will

have equal sizes just as their mothers A and B. ln other words, the relation ”equal

size” is hereditary and extends over the generations. The growth model behaves like a

multiplicating machine which copies the size distribution.

In [22], G. Greiner and R. Nagel are the first to prove this long-time periodic
behaviour. They use the theory of positive semigroups combined with spectral
analysis to get the convergence to a semigroup of rotations. The method relies
on some compactness arguments, which force the authors to set the equation
on a compact subset of p0,8q (x P rα, βs with α ą 0).

In the present paper, we extend the result to the equation set on the
whole R`. Additionally, we determine explicitly the oscillatory limit by the
means of a projection of the initial condition on the dominant eigenfunctions.
Our method relies on General Relative Entropy inequalities (Section 1), which
unexpectedly may be adapted to this case and which are the key ingredient for
an explicit convergence result (Theorem 2 in Section 2, which is the main result
of our study). We illustrate our results numerically in Section 3, proposing a
non-diffusive scheme able to capture the oscillations.
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1 Eigenvalue problem and Entropy

To study the long time asymptotics of Equation (1), we elaborate on previously
established results concerning the dominant positive eigenvector and general
relative entropy inequalities.

1.1 Dominant eigenvalues and balance laws

The eigenproblem and adjoint eigenproblem related to Equation (1) are

λUpxq `
`

xUpxq
˘1
`BpxqUpxq “ 4Bp2xqUp2xq, (2)

λφpxq ´ xφ1pxq `Bpxqφpxq “ 2Bpxqφ
´x

2

¯

. (3)

Perron eigenproblem consists in finding positive solutions U to (2), which in
general give the asymptotic behaviour of time-dependent solutions, which align
along eλtUpxq. Recognizing here a specific case of the eigenproblem studied
in [17], we work under the following assumptions:

$

’

’

’

’

&

’

’

’

’

%

B : p0,8q Ñ p0,8q is locally integrable,

Dz0, γ0,K0 ą 0, @x ă z0, Bpxq ď K0x
γ0 ,

Dz1, γ1, γ2,K1,K2 ą 0, @x ą z1, K1x
γ1 ď Bpxq ď K2x

γ2 .

(4)

We then have the following result, which is a particular case of [17, Theorem 1].

Theorem 1. Under Assumption (4), there exists a unique positive eigenvector
U P L1pR`q to (2) normalised by

ş8

0
xUpxqdx “ 1. It is related to the eigenvalue

λ “ 1 and to the adjoint eigenvector φpxq “ x solution to (3).
Moreover, xαU P L8pR`q for all α P R, and U PW 1,1pR`q.

As already noticed in [15], though 1 is the unique eigenvalue related to a
positive eigenvector, here it is not the unique dominant eigenvalue: we have a
set of eigentriplets pλk,Uk, φkq with k P Z defined by

λk “ 1`
2ikπ

log 2
, Ukpxq “ x´

2ikπ
log 2 Upxq, φkpxq “ x1`

2ikπ
log 2 . (5)

This is the first difference with the most studied case, where the Perron eigen-
value happens to be the unique dominant one: here all these eigenvalues have
a real part equal to 1, so that they all belong to the peripheral spectrum. The
natural questions which emerge are to know whether this set of dominant eigen-
vectors is attractive, as it is the case when it is formed by a unique function;
and if so, where the proofs are different.

First we notice an important property: the family
`

pUkqkPZ, pφkqkPZ
˘

is
biorthogonal for the bracket

xf, ϕy :“

ż 8

0

fpxqϕpxq dx,
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which means that
@pk, lq P Z2, xUk, φly “ δkl. (6)

This is a direct consequence of the normalization of the Perron eigenvectors
which writes xU , φy “ 1 and the fact that λk ‰ λl for k ‰ l.

Even though we are interested in real-valued solutions to Equation (1), due
to the fact that the dominant eigenelements have nonzero imaginary part, we
have to work in spaces of complex-valued functions. Of course real-valued so-
lutions are readily obtained from complex-valued solutions by taking the real
or imaginary part. From now on when defining functional spaces we always
consider measurable functions from R` to C.

The biorthogonal property (6) can be extended into balance laws for general
solutions to Equation (1). For uin P L1pφpxqdxq and u P CpR`, L1pφpxqdxqq
solution to (1) we have the conservation laws

@k P Z, @t ě 0, xupt, ¨q, φky e
´λkt “ xuin, φky. (7)

1.2 General Relative Entropy inequalities

Additionally to the conservation laws above, we have a set of entropy inequal-
ities. In this section, we remain at a formal level. Rigorous justification of the
stated results will appear once the existence and uniqueness results are estab-
lished.

Lemma 1 (General Relative Entropy Inequality). Let B satisfy Assump-
tion (4), U be the Perron eigenvector defined in Theorem 1 and upt, xq be a
solution of Equation (1). Let H : C Ñ R` be a positive, differentiable and
convex function. Provided the quantities exist, we have

d

dt

8
ż

0

xUpxqH
´ upt, xq

Upxqet
¯

dx “ ´DH ruptqe´ts ď 0,

with DH defined by

DH rus :“

8
ż

0

xBpxqUpxq
„

H
´ upx2 q

Upx2 q

¯

´H
´ upxq

Upxq

¯

´∇H
´ upxq

Upxq

¯

¨

´ upx2 q

Upx2 q
´
upxq

Upxq

¯



dx,

where ∇H is the gradient of H obtained by identifying C with R2 and ¨ stands for
the canonical inner product in R2. Moreover, for H strictly convex, u : R` Ñ C
satisfies DH rus “ 0 iff it is such that

upxq

Upxq
“
up2xq

Up2xq
, a.e. x ą 0.

In particular, for all k P Z, DH rUks “ 0.
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The proof is immediate and now standard, carried out by calculation term
by term and use of the equations (1), (2) and (3), see for instance [33, p.92].

In the cases where the Perron eigenvector is a unique dominant eigenvector,
the entropy inequality is a key step to obtain the convergence of upt, xqe´t

towards xuin, φyUpxq. The idea is to prove that upt, xqe´t tends to a limit u8
such that DH ru8s “ 0, which in general implies that u8 is proportional to U ;
the conservation law then giving the proportionality constant.

Here however, since any function vpxq “ fplog xqUpxq with f log 2-periodic
satisfies DH rvs “ 0, the usual convergence result does not hold. This is due
to the lack of hypocoercivity in our case. It is known from [13, 3, 21] that the
general form (GF) of the growth-fragmentation equation is coercive for par-
ticular choices of the coefficients, in the sense that the differential inequality
d
dt}upt, ¨q} ď ´ν}upt, ¨q} holds for some positive constant ν and a well-chosen
norm } ¨ }, when uin is such that xuin, φy “ 0. As already noticed in [28] such
an inequality cannot be valid for an entropic norm in the case of equal mito-
sis. Indeed if for some time t ě 0 (for instance t “ 0) the solution satisfies
upt, xq{Upxq “ upt, 2xq{Up2xq, then the time derivative of the norm vanishes.
However in this case the equation can be hypocoercive in the sense (see [36])
that }upt, ¨q} ď Ce´νt}uin} holds for some positive constants C, ν and any initial
distribution satisfying xuin, φy “ 0. This result is proved in [31, 10] for a class
of weighted L1 norms in the case of a constant growth rate g. Roughly speak-
ing this situation of a non-coercive but hypocoercive equation appears when
the dissipation of entropy can vanish for a nontrivial set of functions, but this
set is unstable for the dynamics of the equation. In our case the equation is
not hypocoercive because the set of functions with null entropy dissipation is
invariant under the flow, as expressed by the following lemma.

Lemma 2. Consider a strictly convex function H and let upt, xq be the solution
to Equation (1) with initial condition up0, xq “ uinpxq. We have the invariance
result

DH ruins “ 0 ùñ DH rupt, ¨qs “ 0, @t ě 0.

As Lemma 1, Lemma 2 is valid in a space where the existence and unique-
ness of a solution is proved, as for instance in the space L2pR`, x{Upxqdxq, see
Section 2.

Proof. Let uin such that DH ruins “ 0 and denote upt, ¨q the solution to Equa-
tion (1).

We have already seen in Lemma 1 that for any u : R` Ñ C, we have

DH rus “ 0 ðñ
upxq

Upxq
“
up2xq

Up2xq
, a.e. x ą 0,

so that by assumption uin
pxq

Upxq “
uin
p2xq

Up2xq for almost every x ą 0.

To prove Lemma 2 we thus want to prove that upt,xq
Upxq “

upt,2xq
Up2xq for almost

every x ą 0, t ą 0. To do so, we notice that if we have a solution ũ of Equation (1)
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which satisfies this property, then the ration vpt, xq “ ũpt, xq{Upxqe´t is solution
of the following simple transport equation

Btvpt, xq ` xBxvpt, xq “ 0,

so that vpt, xq “ vp0, xe´tq. We are led to define a function u1 by

u1pt, xq :“ uinpxe´tq
Upxq et

Upxe´tq
.

We easily check that u1pt, xq{Upxq “ u1pt, 2xq{Up2xq for all t and almost all x,
and that u1 is solution to Equation (1). We conclude by uniqueness that we
have u ” u1 and so DH rupt, ¨qs “ 0 for all t ě 0.

For Hpzq “ |z|p the entropy corresponds to the p-power of the norm in

Ep :“ LppR`, φpxqU1´ppxq dxq.

Define also the space

E8 :“
 

u : R` Ñ C measurable, DC ą 0, |u| ď CU a.e.
(

,

which is the analogous of Ep for p “ 8, endowed with the norm

}u}E8
:“ sup ess

xą0

|upxq|

Upxq
.

These spaces have the property to be invariant under the dynamics of Equa-
tion (1) and to constitute a tower of continuous inclusions, as it is made more
precise in the following two lemmas.

Lemma 3. Let p P r1,8s and let upt, xq be the solution to Equation (1) with
initial data uin P Ep. Then upt, ¨q P Ep for all t ě 0 and

}upt, ¨qe´t}Ep ď }u
in}Ep .

Proof. For p ă 8, this is a direct consequence of Lemma 1 by considering the
convex function Hpzq “ |z|p. Similarly for p “ 8 we get the result by applying
Lemma 1 with the convex function

Hpzq “

#

|z| ´ C if |z| ě C

0 if |z| ď C

with C “ }uin}E8
.

Lemma 4. Let 1 ď p ď q ď 8 and u P Eq. Then u P Ep and

}u}Ep ď }u}Eq .
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Proof. It is clear if q “ `8. For q ă `8, since φpxqUpxqdx is a probability
measure the Jensen’s inequality ensures that

}u}qEp “

ˆ
ż

ˇ

ˇ

ˇ

u

U

ˇ

ˇ

ˇ

p

φU
˙q{p

ď

ż

ˇ

ˇ

ˇ

u

U

ˇ

ˇ

ˇ

q

φU “ }u}qEq .

2 Convergence in the quadratic norm

Equipped with the General Relative Entropy inequalities, we now combine them
with Hilbert space techniques to prove the convergence to periodic solutions.
The Hilbert space formalism provides an interpretation of the periodic limit
in terms of Fourier decomposition, and allows us to give the main ingredients
of the proof while avoiding too many technicalities. We first introduce the
Hilbert space (Section 2.1), in which we prove the well-posedness of Equation (1)
(Section 2.2). We state our main result in Theorem 2.

2.1 The Hilbert space

As we will see below, working in a Hilbert setting is very convenient for our
study. Drawing inspiration from the General Relative Entropy with the convex
quadratic function Hpzq “ |z|2, we work in the Hilbert space

E2 “ L2pR`, x{Upxq dxq

endowed with the inner product

pf, gq :“

ż 8

0

fpxqgpxq
x

Upxq
dx.

We denote by } ¨ } the corresponding norm defined by

}f}2 “ pf, fq.

In this space, the normalization we have chosen for U means

}U} “ }Uk} “ 1

and the biorthogonality property (6) reads

pUk,Ulq “ xUk, φly “ δk,l,

meaning that pUkqkPZ is an orthonormal family in E2. As a consequence the
family pUkqkPZ is a Hilbert basis of the Hilbert space

X :“ spanpUkqkPZ
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and the orthogonal projection on this closed subspace of E2 is given by

Pu :“
`8
ÿ

k“´8

pu,UkqUk, @u P E2.

Additionally, we have the Bessel’s inequality

}Pu}2 “
`8
ÿ

k“´8

|pu,Ukq|2 ď }u}2.

As it is stated in the following lemma, there is a crucial link between X and
the quadratic dissipation of entropy (i.e. DH rus for Hpzq “ |z|2), which can be
written in a simpler way as

D2rus “

ż 8

0

xBpxqUpxq
ˇ

ˇ

ˇ

ˇ

upxq

Upxq
´
upx{2q

Upx{2q

ˇ

ˇ

ˇ

ˇ

2

dx. (8)

Lemma 5. We have
X “ tu P E2, D

2rus “ 0u.

Proof. Since |z|2 is strictly convex, we have already seen in Lemma 1 (and it is
even clearer in the case of D2) that

tu P E2, D
2rus “ 0u “ tu P E2, upxq{Upxq “ up2xq{Up2xq, a.e. x ą 0u Ą X.

Also we clearly have

tu P E2, upxq{Upxq “ up2xq{Up2xq, a.e. x ą 0u “

tu P E2, Df : RÑ C log 2-periodic, upxq “ fplog xqUpxq, a.e. x ą 0u.

If u P E2 is of the form upxq “ fplog xqUpxq with f : R Ñ C log 2-periodic
then necessarily f P L2pr0, log 2sq and the Fourier theory ensures (Fourier-Riesz-
Fischer theorem) that

fpyq “
`8
ÿ

k“´8

f̂pkqe
2ikπy
log 2 ,

where

f̂pkq “
1

log 2

ż log 2

0

fpyqe´
2ikπy
log 2 dy P `2pZq.

So we have in L2
locp0,8q

upxq “ Upxq
`8
ÿ

k“´8

f̂pkqx
2ikπ
log 2 “

`8
ÿ

k“´8

f̂p´kqUkpxq P X.

We also deduce that f̂pkq “ pu,U´kq.
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2.2 Well-posedness of the Cauchy problem

Since the Perron eigenvalue λ “ 1 is strictly positive, it is convenient to consider
a rescaled version of our problem

$

’

&

’

%

B

Bt
vpt, xq `

B

Bx

`

xvpt, xq
˘

` vpt, xq `Bpxqvpt, xq “ 4Bp2xqvpt, 2xq, x ą 0,

vp0, xq “ uinpxq.
(9)

The solutions to Equation (1) are related to the solutions to (9) by the simple
relation

upt, xq “ etvpt, xq.

It is proved in [20] (see also [10]) that the problem (9) is well-posed in E1 and
admits an associated C0-semigroup pTtqtě0 which is positive, meaning that for
any uin P E1 there exists a unique (mild) solution v P CpR`, E1q to (9) which is
given by vptq “ Ttu

in, and vptq ě 0, t ě 0, for uin ě 0. From Lemma 3 we have
that all subspaces Ep with p P r1,8s are invariant under pTtqtě0. Additionally,
the restriction of Tt to any Ep is a contraction, i.e.

@u P Ep, @t ě 0, }Ttu}Ep ď }u}Ep . (10)

To get the well-posedness of (9) in E2, it only remains to check the strong
continuity of pTtqtě0 in E2.

Lemma 6. The semigroup pTtqtě0 restricted to E2 is strongly continuous.

Proof. We use the subspace E8 Ă E2 and the contraction property (10) to write
for any u P E8

}Ttu´ u}
2
E2
“

ż 8

0

|Ttu´ u|
2pxq

x

Upxq
dx

ď 2}u}E8

ż 8

0

|Ttu´ u|pxqx dx “ 2}u}E8
}Ttu´ u}E1 .

The strong continuity of pTtqtě0 in E1 ensures that }Ttu ´ u}E1 Ñ 0 and so
}Ttu ´ u}E2

Ñ 0 when t Ñ 0. By density of E8 Ă E2 we get the strong
continuity of pTtqtě0 in E2.

We denote by A the generator of the semigroup pTtqtě0 in E2. For any u in
the domain DpAq we have in the distributional sense

Aupxq “ ´pxupxqq1 ´ upxq ´Bpxqupxq ` 4Bp2xqup2xq.

The eigenpairs pλk,Ukq are defined by AUk “ pλk ´ 1qUk and we easily prove
the following properties.

Proposition 7. For all t ě 0 we have

10



1. @k P Z, Tt Uk “ e
2ikπt
log 2 Uk,

2. @u P E2, @k P Z, pTtu,Ukq “ pu,Ukqe
2ikπt
log 2 ,

3. @u P E2, PTtu “ TtPu “
ř

kPZpu,Ukqe
2ikπt
log 2 Uk,

4. TtX Ă X and for all u P X, Ttu “
ř

kPZpu,Ukqe
2ikπt
log 2 Uk,

5. X Ă DpAq and for all u P X, Au “
ř

kPZpu,Ukq
2ikπ
log 2Uk.

The second property is nothing but a rewriting of the conservation laws (7).
The fourth point makes more precise and proves more rigorously the invariance
property in Lemma 2.

2.3 Convergence

We are now ready to state the asymptotic behaviour of solutions to Problem 1.

Theorem 2. Assume that B satisfies Hypothesis (4) and define Uk by (5).
Then for any uin P E2, the unique solution upt, xq P C

`

R`, E2

˘

to Equation (1)
satisfies

8
ż

0

ˇ

ˇ

ˇ

ˇ

upt, xqe´t ´
`8
ÿ

k“´8

puin,Ukqe
2ikπ
log 2 t Ukpxq

ˇ

ˇ

ˇ

ˇ

2
x dx

Upxq
ÝÝÝÝÑ
tÑ`8

0.

Remark 1. This convergence result can also be formulated in terms of semi-
groups. Set

Rtu :“ TtPu “ PTtu “
8
ÿ

k“´8

pu,Ukqe
2ikπ
log 2 t Uk.

This defines a semigroup,

Rt`su “ Tt`sPu “ Tt`sP
2u “ TtTsP

2u “ TtPTsPu “ RtRsu,

which is log 2-periodic. The result of Theorem 2 is equivalent to the strong
convergence of pTtqtě0 to pRtqtě0, i.e.

@u P E2, }Ttu´Rtu} ÝÝÝÝÑ
tÑ`8

0.

It is also equivalent to the strong stability of pTtqtě0 in XK “ KerP

@u P XK, }Ttu} ÝÝÝÝÑ
tÑ`8

0.
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Remark 2. We may use the Poisson summation formula to reinterpret the limit
function in terms of only uinpxq : we recall that this formula states that, under

proper assumptions on f and its Fourier transform Ffpξq “
`8
ş

´8

fpyqe´iyξdy,

we have
8
ÿ

`“´8

fpy ` `aq “
8
ÿ

k“´8

Ffp2πk
a
qe

2ikπy
a .

Taking a “ log 2, fpyq “ uinpe´yqe´2y, we apply it to the limit function taken
in y “ t´ log x

8
ÿ

k“´8

puin,UkqUkpxqe
2ikπt
log 2 “ Upxq

8
ÿ

`“´8

2´2`x2e´2tuinp2´`xe´tq.

This formula is reminiscent of a similar one found in [16], Theorem 1.3. (b),
for the limit case B constant.

Proof of Theorem 2. We follow here the classical proof of convergence, pio-
neered in [29, 30]. Though the limit is now an oscillating function, this strategy
may be adapted here, as shown below.

Define

hpt, xq :“ upt, xqe´t ´
`8
ÿ

k“´8

puin,Ukqe
2ikπ
log 2 t Ukpxq “ pI ´ P qTtuin

which is solution to Equation (2.2). Lemma 3 with p “ 2 ensures that

d

dt
}hpt, ¨q} ď 0,

so that it decreases through time. Since it is a nonnegative quantity, it means
that it tends toward a limit L ě 0 and it remains to show that L “ 0. Let us
adapt to our case the proof in B. Perthame’s book [33, p.98]. Because of the
contraction property, it is sufficient to do so for uin P DpAq which is a dense
subspace of E2. Recall that for uin P DpAq the solution to Equation (1) can be
understood as a classical solution, upt, ¨q belonging to DpAq for all time. The
last property in Proposition 7 ensures that X Ă DpAq, so hp0, ¨q P DpAq. Define
qpt, xq “ Bthpt, xq which is clearly a mild solution to Equation (1) with initial
datum

qpt “ 0, xq “ Ahpt “ 0, xq.

By contraction we get
}qpt, ¨q} ď }Ahp0, ¨q}.

Introduce the sequence of functions hnpt, ¨q “ hpt ` n, ¨q. Since h and Bth are
uniformly bounded in the Hilbert space E2, the Ascoli and Banach-Alaoglu the-
orems ensure that phnqnPN is relatively compact in Cpr0, T s, Ew

2 q where Ew
2 is E2

endowed with the weak topology. After extracting a subsequence, still denoted

12



hn, we have hn Ñ g in Cpr0, T s, Ew
2 q. Additionally since

ş8

0
D2rhpt, ¨qs dt ă `8,

we have
ż T

0

D2rhnpt, ¨qs dt “

ż T`n

n

D2rhpt, ¨qs dtÑ 0.

and it ensures, using the definition (8) of D2, that hnpt,xq
Upxq ´

hnpt,2xq
Up2xq Ñ 0 in

the distributional sense. We deduce from the convergence hn Ñ g that gpt,xq
Upxq ´

gpt,2xq
Up2xq “ 0, and so D2rgpt, ¨qs “ 0 for all t ě 0. By Lemma 5 this means that

gpt, ¨q P X for all t ě 0. But for all n P N and all t ě 0 we have hnpt, ¨q P X
K “

KerP by construction of h, and since XK is a linear subspace, the weak limit g
of hn also satisfies gpt, ¨q P XK for all t ě 0. Finally gpt, ¨q P X XXK “ t0u for
all t ě 0, so g ” 0 and the proof is complete.

The result in Theorem 2 is in contrast to the property of asynchronous
exponential growth which states that the solutions behave like upt, xq „
xuin, φyUpxqet when t Ñ `8. This property is satisfied for a large class of
growth-fragmentation equations [30], but the lack of hypocoercivity in our
case prevents it to hold. However we can deduce from Theorem 2 a “mean
asynchronous exponential growth” property, in line with probabilistic results,
e.g. [18].

Corollary 1. Under Assumption (4), the semigroup pTtqtě0 generated by
pA, DpAqq is mean ergodic, i.e.

@u P E2,
1

t

ż t

0

Tsu ds ÝÝÝÝÑ
tÑ`8

P0u “ pu,UqU “ xu, φyU .

Proof. Because of Theorem 2, it suffices to prove that

1

t

ż t

0

Rsu ds “ P

ˆ

1

t

ż t

0

Tsu ds

˙

ÝÝÝÝÑ
tÑ`8

P0u.

Denoting mt “
1
t

şt

0
Tsu ds the Cesàro means of pTtuqtě0 we have

Pmt “

`8
ÿ

k“´8

pmt,UkqUk.

By the conservation laws (7) we have for k ‰ 0

pmt,Ukq “
1

t

ż t

0

pTsu,Ukq ds “ pu,Ukq
1

t

ż t

0

e
2ikπ
log 2 sds “ pu,Ukq

log 2

2ikπ

e
2ikπ
log 2 t ´ 1

t

and pmt,U0q “ pu,U0q. This gives

Pmt “ P0u`
1

t

ÿ

k‰0

pu,Ukq
log 2

2ikπ
Uk

`

e
2ikπ
log 2 t ´ 1

˘

.

13



Since
›

›

›

›

ÿ

k‰0

pu,Ukq
log 2

2ikπ
Uk

`

e
2ikπ
log 2 t ´ 1

˘

›

›

›

›

2

“
ÿ

k‰0

ˇ

ˇ

ˇ
pu,Ukq

log 2

2ikπ

`

e
2ikπ
log 2 t ´ 1

˘

ˇ

ˇ

ˇ

2

ď

´ log 2

π

¯2 ÿ

kPZ
|pu,Ukq|2 “

´ log 2

π

¯2

}Pu}2

we conclude that

}Pmt ´ P0u} ď
1

t

log 2

π
}Pu} ÝÝÝÝÑ

tÑ`8
0.

3 Numerical solution

3.1 A first-order non diffusive numerical scheme

Another way to understand the origin of the oscillatory behaviour is to consider
the underlying Piecewise Deterministic Markov Process (PDMP), see e.g. [12,
14, 18]. If we follow a given cell of size x at time 0, it is of size 2´nxet at
time t if it has divided n times before t; hence, any of its descendants has to
remain exactly in the countable set t2´`xet, ` P Nu at any time. We can say
that we need a “non-diffusive” numerical scheme: if the transport rate is not
exactly linear but approximately linear, or if the splitting into two cells does
not give rise to two exactly equally-sized but to approximately two equally-sized
daughters, then the numerical scheme computes the solution of an approximate
equation, which is proved, after renormalization, to converge exponentially fast
toward a steady behaviour. Looking at the descendants, it means that instead
of remaining in the countable set t2´`xet, ` P Nu, they will disperse around,
and progressively fill in the space p0, xetq. This exponential convergence toward
a steady state will give rise only to some damped oscillations.

The numerical scheme thus needs to satisfy the two following conditions:

1. the discretization of the transport equation B
Btu `

B
Bx pxuq must be non

diffusive. If we use a standard upwind scheme, we would thus like to have
a Courant-Friedrichs-Lévy (CFL) condition equal to 1. This means that
any point of the grid at time t is transported by the transport equation
B
Btu`

B
Bx pxuq to another point of the grid at time t`∆t.

2. The discretization of the fragmentation term 4Bp2xqupt, 2xq´Bpxqupt, xq
must ensure that if x is a point of the grid, then so is x{2 and 2x - at
least inside the computational domain rxmin, xmaxs - so that there is no
approximation when applying the fragmentation operator.

The condition 2 leads us to define the following geometric grid, for given n,N P

N˚:
δx :“ 2

1
n ´ 1, xk :“ p1` δxqk´N , 0 ď k ď 2N. (11)
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Then, for any k P N, 0 ď k ď 2N, 2xk “ xk`n is in the grid. The computational

domain is rx0, x2N s “ r2
´ 1
n , 2

N
n s. Thanks to the properties of the eigenvector

U established in [3, 17], we have U quickly vanishing toward 0 and infinity, so
that the truncation does not lead to an important error.

For the numerical scheme, it is more convenient to consider the function

wpt, xq :“ xupt, xqe´λt “ xvpt, xq,

which is solution to the conservative equation

B

Bt
wpt, xq `

B

Bx
pxwpt, xqq `Bpxqwpt, xq “ 2Bp2xqwpt, 2xq.

The conservation law reads
ż 8

0

wpt, xq dx “

ż 8

0

wp0, xq dx

and we also have the contraction property

}wpt, ¨q}L1 ď }wp0, ¨q}L1 .

We consider the semi-implicit scheme with splitting given by

w
l` 1

2

k ´ wlk
δt

`
xkw

l
k ´ xk´1w

l
k´1

xk ´ xk´1
`Bkw

l` 1
2

k “ 0, 1 ď k ď 2N,

wl`1
k ´ w

l` 1
2

k

δt
“ 2Bk`nw

l` 1
2

k`n, 1 ď k ď 2N,

where Bk :“ Bpxkq, and the influx boundary condition chosen to keep the
conservation property at the discrete level

wl0 “
x2N
x0

wl2N `
1

x0

n
ÿ

k“1

pxk ´ xk´1qBkw
l` 1

2

k .

Lemma 8. The numerical scheme is conservative in the sense that for all l ě 0

2N
ÿ

k“1

pxk ´ xk´1qw
l`1
k “

2N
ÿ

k“1

pxk ´ xk´1qw
l
k.

In order to avoid diffusivity of the numerical scheme we choose the CFL
condition

δt “
δx

1` δx
.

Indeed under this condition the discretization of the transport term sends ex-
actly a point of the grid on the next point of the grid (the discrete transport
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follows the characteristics). Under this CFL condition, the first step of the
scheme can be written as

w
l` 1

2

k “
1

1` δtBk

δt

δx
wlk´1

which leads to the condensed form of the full scheme

wl`1
k “

1

1` δtBk

xk´1

xk
wlk´1 `

2δtBk`n
1` δtBk`n

δt

δx
wlk`n´1, 1 ď k ď 2N, (12)

and

wl0 “ p1` δtB1q

„

x2N
x0

wl2N `
n´1
ÿ

k“1

xk
x0

δtBk`1

1` δtBk`1
wlk



. (13)

This scheme is clearly positive. Together with the discrete conservation law we
deduce that it is a contraction for the discrete L1 norm } ¨ }1 defined for a vector
u “ pukq1ďkď2N by

}u}1 :“
2N
ÿ

k“1

pxk ´ xk´1q|uk| “
δx

1` δx

2N
ÿ

k“1

xk|uk|.

Theorem 3 (Convergence in the L1 norm). Consider that B is continuous. Let
uin P E8 such that Auin P E8, and assume that the associated solution wpt, xq
belongs to C2

b pr0,`8qˆ p0,`8qq. Let wlk be the numerical solution obtained by
the iteration rule (12)–(13) and with the initial data u0k “ uinpxkq. Then for all
r ą 0 there exists a constant Cr ą 0 such that for all T ą 0

sup
tlďT

}el}1 ď CrT
`

2
N
n ´

logn
log 2 ` 2´r

N
n

˘

,

where e is the “error” vector defined by elk “ wlk ´ wptl, xkq.

This is a convergence result since if n and N{n tend to infinity in such a
way that logn

log 2 ´
N
n Ñ `8, then the error tends to zero. For instance if we

take N “ t ε
log 2n log nu with ε P p0, 1q we get a speed of convergence of order

nε´1 ` n´rε. Choosing r “ 1
ε ´ 1 we obtain an order nε´1 for any ε P p0, 1q,

meaning that the scheme is “almost” of order 1 in n.

Proof. We write the scheme in a condensed form wl`1 “ Awl where A is the
iteration matrix. The contraction property reads }A} ď 1, and it implies the
stability of the scheme. Now we prove the consistency. Taylor expansions give

wptl` 1
2
, xkq “ wptl, xkq `

δt

2
Btwptl` 1

2
, xkq `Opδt

2q

xkwptl, xkq “ xk´1wptl, xk´1q ` pxk ´ xk´1qBxpxwqptl, xkq `Oppxk ´ xk´1q
2q
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and so

wptl` 1
2
, xkq “

xk´1

xk
wptl, xk´1q ` δt

”1

2
Btwptl` 1

2
, xkq ` Bxpxwqptl, xkq

ı

`Opδt2 ` pδtqpxk ´ xk´1qq.

We get

wptl` 1
2
, xkq “

1

1` δtBk

xk´1

xk
wptl, xk´1q

`
δt

1` δtBk

”1

2
Btwptl` 1

2
, xkq ` Bxpxwqptl, xkq `Bkwptl` 1

2
, xkq

ı

`Opδt2 ` pδtqpxk ´ xk´1qq.

Now from

wptl`1, xkq “ wptl` 1
2
, xkq `

δt

2
Btwptl` 1

2
, xkq `Opδt

2q

we deduce

wptl`1, xkq “
1

1` δtBk

xk´1

xk
wptl, xk´1q `

2δtBk`n
1` δtBk`n

δt

δx
wptl, xk`n´1q

`
δt

1` δtBk

”1

2
Btwptl` 1

2
, xkq ` Bxpxwqptl, xkq `Bkwptl` 1

2
, xkq

ı

`
δt

2
Btwptl` 1

2
, xkq ´

2δtBk`n
1` δtBk`n

δt

δx
wptl, xk`n´1q

`Opδt2 ` pδtqpxk ´ xk´1qq.

It remains to estimate

εlk :“
1

2

” 1

1` δtBk
` 1

ı

Btwptl` 1
2
, xkq `

1

1` δtBk
Bxpxwqptl, xkq

`
Bk

1` δtBk
wptl` 1

2
, xkq ´

2Bk`n
1` δtBk`n

1

1` δx
wptl, xk`n´1q

and the boundary condition

εl0 :“ wptl, x0q ´ p1` δtB1q

„

x2N
x0

wptl, x2N q `
n´1
ÿ

k“1

xk
x0

δtBk`1

1` δtBk`1
wptl, xkq



.

Using that
Bxpxwqptl, xkq “ Bxpxwqptl` 1

2
, xkq `Opδtq

wptl, xk`n´1q “ wptl` 1
2
, xk`nq `Opδt` pxk ´ xk´1qq

and

Btwptl` 1
2
, xkq ` Bxpxwqptl` 1

2
, xkq `Bkwptl` 1

2
, xkq ´ 2Bk`nwptl` 1

2
, xk`nq “ 0
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we get

|εlk| ď
1

1` δtBk

„

δtBk
2
|Btwptl` 1

2
, xkq|

`

ˇ

ˇ

ˇ

1` δtBk
1` δtBk`n

1

1` δx
´ 1

ˇ

ˇ

ˇ
2Bk`nwptl` 1

2
, xk`nq



`Opδt` pxk ´ xk´1qq

ď
1

1` δtBk

„

δtBk
2
}Auin}E8

xkUpxkq

`
δtBk ` δx` δtBk`n ` δtδxBk`n

p1` δtBk`nqp1` δxq
2Bk`n}u

in}E8
xk`nUpxk`nq



`Opδt` pxk ´ xk´1qq

ď δt

„

}Auin}E8

2
max
k
pxkBkUpxkqq

` 2}uin}E8
max
k
pBk`npBk ` 1` 2Bk`nqxk`nUpxk`nqq



`Opδt` pxk ´ xk´1qq

“ Opδt` pxk ´ xk´1qq,

where we have used that |wpt, xq| “ |xTtu
inpxq| ď }uin}E8

xUpxq and

|Btwpt, xq| “ |xBtTtu
inpxq| “ |xTtAuinpxq| ď }Auin}E8

xUpxq.

The boundedness of x ÞÑ xBpxqUpxq and x ÞÑ 2Bp2xqp1`Bpxq`2Bp2xqqxUp2xq
is a consequence of the assumptions (4) on the continuous function B and the
estimates on U available in [17, 3]. Similarly for the boundary condition we have

|εl0| ď }u
in}E8

x0Upx0q ` p1`B1q

„

x22N }u
in}E8

x2NUpx2N q

` δt
}uin}E8

x0

n´1
ÿ

k“1

x2kBk`1Upxkq


which is small when N
n is large since x0 “ 2´

N
n , xn “ 2x0, x2N “ 2

N
n and we

know from [17] that for all r P R, when xÑ 0,

Upxq “ Opxrq

and from [3] that when xÑ `8,

Upxq “ Ope´
K1
γ1
xγ1
q.

More precisely for all r P R we have

|εl0| “ O
´

2´p1`rq
N
n ` 23

N
n exp

`

´ K1

γ1
2γ1

N
n

˘

` 2´p1`γ0`rq
N
n

¯

“ Op2´r
N
n q.
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We conclude by the standard argument of Lax which deduces convergence from
stability and consistency. By definition we have

xk ´ xk´1 “ pδxqxk ď pδxqx2N “ p2
1
n ´ 1q2

n
N „

log 2

n
2
N
n

δt “
δx

1` δx
“ 1´ 2´

1
n „

log 2

n

so that we get

}el`1}1 ď }Ae
l}1 ` δtO

´2
N
n

n
` 2´r

N
n

¯

ď }el}1 ` δtO
`

2
N
n ´

logn
log 2 ` 2´r

N
n

˘

and we conclude by iteration, using that e0 “ 0.

3.2 Illustration

We illustrate here first the case Bpxq “ x2: in Figure 1, we draw the real part of
the first eigenvectors, taken for k “ 0, 1, 2. The oscillatory behaviour will depend
on the projection of the initial condition on the space generated by pUkq: it will
be stronger if the coefficients for k ‰ 0 are large compared to the projection
on U0. We show two results for two different initial condition (Figure 2, Left
and Right respectively), one a peak very close to the Dirac delta in x “ 2
and the other very smooth. In both cases, the solution oscillates, as showed in
Figures 3 and 4, though since the projections on X are very different (with a
much higher projection coefficient on the positive eigenvector for the smooth
case than for the sharp case) these oscillations take very different forms. In
the second case, they are so small that for any even slightly diffusive numerical
scheme they are absorbed by the diffusion, leading to a seemingly convergence
towards the dominant positive eigenvector. We also see that the equation is no
more regularizing: discontinuities remain asymptotically for the Heaviside case.

To explore the speed of convergence in the Theorem 2 and Corollary 1, we
choose Bpxq “ x3, take a very smooth initial condition (Figure 5 Left), with
8
ş

0

uinpxqxdx “ puin,U0q “ 1, for which the coefficients puin,Ukq decrease rapidly

with k, so that Rtu
in is very well estimated by the series truncated for k “ 5.

We then take a refined grid with n “ 500 and N “ t
n logn
2 log 2 u “ 2241. To estimate

U0, we use that 1
log 2

t`log 2
ş

t

ups, xqe´sds tends to U0, and take this limit value

to define Un0 „ U0 and accordingly Unk „ Uk. We then define the estimate for
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Figure 1: The real part for the three first eigenvectors U0, U1, U2 for Bpxq “ x2.
We see the oscillatory behaviour for U1 and U2.

Rtu
in as pRtu

inqn “
5
ř

k“´5

puin,Unk qe
2ikπ
log 2 tUnk , and define the two error terms in

the discrete norm En2 defined as E2:

Error2En2 :“

›

›

›

›

unpt, xqe´t ´ pRtu
inqn

›

›

›

›

2

En2

,

Error Mean2
En2

:“

›

›

›

›

1
log 2

t`log 2
ş

t

unps, xqe´sds´ Un0
›

›

›

›

2

En2

,

(14)

where un is the numerical approximation of u. We observe several phases, which
illustrate exactly the theory. First, a very fast decay of the quantity ErrorEn2 ,

linked to its initial very high value since the constant C such that uin ď CU0

is very large. Then we have a phase of exponential decay for both ErrorEn2
and Error MeanEn2 (the linear decay in Figure 5 Right), corresponding to a
spectral gap, as proved in [22] for the assumption of a compact support, which
is satisfied here due to the truncation. Of note, this phase lasts much more for
Error MeanEn2 than for ErrorEn2 , most probably due to averaging errors in the
non-oscillatory solution. The final phase is either a plateau for Error MeanEn2
(linked to our definition of Un0 ) or a quadratic increase for ErrorEn2 , which is
linked to the fact that the convergence constant in Theorem 3 depends linearly
on the final time.

Discussion

We studied here the asymptotic behaviour of a non-hypocoercive case of the
growth-fragmentation equation. In this case, the growth being exponential and
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Figure 2: Two different initial conditions.
Left: peak in x “ 2. Right: uinpxq “ x2 expp´x2{2q.

Figure 3: Time evolution of max
xą0

upt, xqe´t.

Left: for the peak as initial condition. Right: for the smooth initial condition.

the division giving rise to two perfectly equal-sized offspring, the descendants
of a given cell all remain in a countable set of characteristics. This results in
a periodic behaviour, the solution tending to its projection on the span of the
dominant eigenvectors. Despite this, we were able to adapt the proofs based
on general relative entropy inequalities, which provide an explicit expression for
the limit.

Our result could without effort be generalised to the conservative case, where
only one of the offspring is kept at each division: in Equation (1), the term
4Bp2xqup2xq is then replaced by 2Bp2xqup2xq. The consequence is then sim-
ply that the dominant eigenvalue is zero, a simple calculation shows that the
dominant positive eigenvector is xUpxq, and all the study is unchanged.

Equation (1) may also be viewed as a Kolmogorov equation of a piecewise
deterministic Markov process, i.e. as the equation satisfied by the expectation
of the empirical measure of this process, see [14, 24]. Our study corresponds ex-
actly to the case without variability in the growth rate studied in [18]. In [18], a

21



Figure 4: Size distribution upt, xqe´t at five different times (each time is in a
different grey). Left: for the peak as initial condition. Right: for the smooth
initial condition.
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Figure 5: Left: initial distribution (full blue line) and dominant eigenvector
(doted red line), for Bpxq “ x3. We see that the constant such that uin ď U0 is
very large. Right: time evolution of ErrorEn2 (doted red line) and Error MeanEn2
(full blue line), in a log scale for the ordinates.

convergence result towards an invariant measure for the distribution of new-born
cells is proved (this measure being xBpxqUpxq up to a multiplicative constant).
However, this does not contradict the above study, because the convergence
result concerns successive generations and not a time-asymptotics. A determin-
istic equivalent corresponds to studying the behaviour of a time-average of the
equation. Corollary 1 confirms that if we rescale the solution by e´t and average
it over a time-period, it does converge towards U .

Our result could also easily be extended to the case where the division kernel
is self similar, i.e. kpy, dxq “ 1

yk0p
dx
y q, and is a sum of Dirac masses specifically

linked by the following relation (see Condition H in [16]): Supppk0q “ Σ where
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Σ is such that

DL P N˚ Y t`8u, Dθ P p0, 1q, Dpp`q`PN, `ďL Ă N, 0 ă p` ă p``1 @` P N, ` ď L´ 1,

Σ “ tσ` P p0, 1q;σ` “ θp`u , pp`q0ď`ďL are setwise coprime.

This condition expresses the fact that all the descendants of a given individual
evolve permanently on the same countable set of characteristic curves. The case
of binary fission into two equal parts corresponds to L “ 1 and pL “

1
2 . Note

also that for the same reason, an oscillatory behaviour also happens for the
coagulation equation in the case of the so-called diagonal kernel [27].

Other generalisations may also be envisaged, for instance to enriched equa-
tions, or to other growth rate functions satisfying gp2xq “ 2gpxq, see [15], that
is, functions of the form gpxq “ xΦplogpxqq where Φ a logp2q periodic function.

An interesting future work could consist in strengthening the convergence
result in Theorem 2. Indeed this result does not provide any rate of decay
and the speed of convergence may depend on the initial data uin. A uniform
exponential convergence would be ensured for instance by [1, Proposition C-
IV.2.13], provided that one can prove that 0 is pole of A. This appears to be a
difficult question, which is equivalent to the uniform stability of pTtqtě0 in XK

or to the uniform mean ergodicity of pTtqtě0 in E2.

We chose to work in weighted L2 spaces because the theory may be devel-
oped both very simply and elegantly in this framework, where the terms are
interpreted in terms of scalar product and Fourier decomposition. The asymp-
totic result of Theorem 2 could most probably be generalised to weighted L1

spaces, by considering the entropy inequality with an adequate convex func-
tional. Developing a theory in terms of measure-valued solutions, in the same
spirit as in [23], would also be of interest, since the equation has no regularising
effect: an initial Dirac mass leads to a countable set of Dirac masses at any
time.
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