Edge-Preserving Integration of a Normal Field: Weighted Least Squares and L1 Approaches - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Edge-Preserving Integration of a Normal Field: Weighted Least Squares and L1 Approaches

Yvain Quéau
Jean-Denis Durou

Résumé

We introduce several new functionals, inspired from variational image denoising models, for recovering a piecewise-smooth surface from a dense estimation of its normal field. In the weighted least-squares approach, the non-differentiable elements of the surface are a priori detected so as to weight the least-squares model. To avoid this detection step, we introduce reweighted least-squares for minimising an isotropic TV-like functional, and split-Bregman iterations for L1 minimisation.
Fichier principal
Vignette du fichier
queau_15235.pdf (1.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01360871 , version 1 (06-09-2016)

Identifiants

  • HAL Id : hal-01360871 , version 1

Citer

Yvain Quéau, Jean-Denis Durou. Edge-Preserving Integration of a Normal Field: Weighted Least Squares and L1 Approaches. 5th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM 2015), May 2015, Lège Cap Ferret, France. pp. 576-588. ⟨hal-01360871⟩
95 Consultations
155 Téléchargements

Partager

More