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Edge-Preserving Integration of a Normal Field:

Weighted Least-squares, TV and L
1 Approaches

Yvain Quéau and Jean-Denis Durou

Université de Toulouse, IRIT, UMR CNRS 5505, Toulouse, France
yvain.queau@enseeiht.fr durou@irit.fr

Abstract. We introduce several new functionals, inspired from varia-
tional image denoising models, for recovering a piecewise-smooth surface
from a dense estimation of its normal field1. In the weighted least-squares
approach, the non-differentiable elements of the surface are a priori de-
tected so as to weight the least-squares model. To avoid this detection
step, we introduce reweighted least-squares for minimising an isotropic
TV-like functional, and split-Bregman iterations for L1 minimisation.

Keywords: Integration; Shape-from-gradient; Photometric stereo.

1 Introduction

Problem Statement. The normal field n of a surface can be estimated by 3D-
reconstruction techniques such as photometric stereo [17]. To obtain a set of 3D
points located on the surface, the estimated normal field must then be integrated
into a depth map z, over a subset Ω of the image domain. This second step is
crucial in the 3D-reconstruction process, since the accuracy of the recovered
surface widely depends on the robustness of integration to noise and outliers.

Let us first recall the equations describing this integration problem, which are
similar under both orthographic and perspective projections. In the orthographic
case, z is related to the normal field n, for every (x, y) ∈ Ω, through [6]:

n(x, y) =
1

√

‖∇z(x, y)‖22 + 1

[

−∇z(x, y)
1

]

(1)

where ∇z = [∂xz, ∂yz]
⊤

is the gradient of z. Denoting:

pO(x, y)=−
n1(x, y)

n3(x, y)
, qO(x, y)=−

n2(x, y)

n3(x, y)
, gO(x, y)=[pO(x, y), qO(x, y)]

⊤
(2)

where ni, i ∈ [1, 3], is the i-th component of n, we obtain from (1) and (2):

∇z(x, y) = gO(x, y) (3)

1 Sample codes for testing the proposed methods can be found on http://ubee.

enseeiht.fr/photometricstereo/



In the case of perspective projection, we need to know the focal length f of
the camera, and to set the origin of image coordinates to the principal point.
Introducing the change of variable z̃ = log z, we obtain [6]:

n(x, y)=
1

√

‖∇z̃(x, y)‖
2
2+

(

1+∇z̃(x, y)· 1
f
[x, y]

⊤
)2

[

−∇z̃(x, y)

1+∇z̃(x, y)· 1
f
[x, y]

⊤

]

(4)

By setting d(x, y) = xn1(x, y) + yn2(x, y) + fn3(x, y), and:

pP(x, y)=−
n1(x, y)

d(x, y)
, qP(x, y)=−

n2(x, y)

d(x, y)
, gP(x, y)=[pP(x, y), qP(x, y)]

⊤
(5)

we get from (4) and (5), after some algebra:

∇z̃(x, y) = gP(x, y) (6)

Thus, for both these projection models, one has to solve, in every (x, y) ∈ Ω,
the same equation:

∇u(x, y) = g(x, y) (7)

where (u,g) = (z,gO) in the orthographic case, and (u,g) = (z̃,gP) in the
perspective one.

Integrating the normal field refers to the process of recovering the unknown
u, which will be abusively referred to as “depth map” in the following, from an
estimation g = [p, q]⊤ of its gradient field over Ω. This problem, which has a long
history since it dates back to the Dirichlet problem, has given rise to numerous
studies in the area of mathematics for imaging, using many different approaches
such as Fourier analysis [7,16], fast marching [8] or Sylvester equations [10,11].
In this paper, as in many recent works [1,2,4,5,14], we choose the energy min-
imisation way, which offers a natural framework for controlling the influence of
noise and outliers.

Summary of our Contributions. We focus on the case where solving Eq.
(7) makes sense only almost everywhere, which happens as soon as the surface
to be reconstructed contains edges and depth discontinuities: the gradient ∇u

of u cannot be defined on the neighborhood of such non-differentiable elements.
In this case, classical least-squares solvers fail (Figure 1) and more robust esti-
mation must be considered. Completing the study proposed in [5], we introduce
three new functionals inspired by image denoising models, whose minimisation
is shown to provide piecewise-smooth surfaces on an arbitrary connected domain
Ω. They are based, respectively, on weighted least-squares (WLS), isotropic total
variation (TV), and L1 optimisation.

The rest of this paper is organized as follows. After reviewing in Section 2 the
main energy minimisation methods for surface reconstruction from a gradient
field, we detail in Section 3 the proposed edge-preserving approaches, which are
eventually evaluated on both synthetic and real-world datasets in Section 4.



Fig. 1. Least-squares normal integration. First row, from left to right: ground truth
C∞ depth map u, analytical derivatives p and q corrupted by an additive zero-mean
Gaussian noise with standard deviation σ = 5% of ‖g‖∞, and least-squares reconstruc-
tion [10]. Second row: same, for piecewise-C∞ surface. Noise in the data is successfully
handled by least-squares (first row), but discontinuities are smoothed (second row).

2 Related Work

2.1 Integrability of a Gradient Field

In the ideal case, g = [p, q]⊤ is the true gradient of a C2 function u holding:
∂yxu = ∂xyu (Schwarz’ theorem). The distance from a gradient field g to an ideal
(integrable) field holding ∂yp = ∂xq can thus be measured by the integrability

term [7]:
I(x, y) = |∂yp(x, y)− ∂xq(x, y)| (8)

which is never null in real-world scenarios, because of noise and of depth discon-
tinuities. In such cases, it makes sense to estimate an approximate solution u of
Eq. (7) whose gradient ∇u is integrable, rather than to solve Eq. (7) exactly.

This can be performed efficiently through energy minimisation, by seeking
u as the solution of an optimisation problem, lying in an appropriate function
space. For instance, if u is sought in L2(Ω), integrability of its gradient is im-
plicitely granted (in the presence of discontinuities, the space of functions with
bounded variations BV (Ω) should be preferred, so as to allow piecewise-smooth
functions). We provide hereafter a brief overview of the main normal integration
methods relying on energy minimisation.

2.2 Continuous Least-squares Formulation

The most natural energy minimisation approach to solve (7) consists in estimat-
ing u in a least-squares sense [7,16,6,10], by introducing the functional:

FLS(u) =

∫∫

Ω

‖∇u(x, y)− g(x, y)‖22 dx dy (9)

According to the calculus of variations, minimising this functional is equivalent

to solving the associated Euler-Lagrange equation on the interior part
◦

Ω of Ω:

∆u = ∇·g (10)



which is a Poisson equation (∇· is the divergence operator, which is the adjoint
of the gradient, and ∆ = ∇·∇ is the Laplacian operator), along with the natural
boundary condition (BC), which is of the Neumann type:

(∇u− g) · µ = 0 (11)

on the boundary ∂Ω of Ω, µ being normal to ∂Ω.
Discretising Eqs (10) and (11) provides a linear system of equations which

can be solved in linear time through Fast Fourier Transform (FFT), if Ω is
rectangular. Indeed, replacing the natural BC (11) by a periodic one, Frankot
and Chellappa’s well-known algorithm [7] recovers the Fourier transform of the
depth map analytically, and inverse FFT eventually provides a solution u of
(10). This algorithm was extended by Simchony et al. in [16] to the natural BC,
through the use of Discrete Cosine Transform (DCT).

2.3 Discretising the Functional, or the Optimality Conditions?

Instead of discretising the optimality conditions (10) and (11), the functional
(9) itself can be discretised. This is the approach followed in [6], where it is
shown that doing so, no explicit BC is needed (yet, the natural BC is implicitely

satisfied). After proper discretisation, a new linear system is obtained, which is
solved using Jacobi iterations. Alternatively, Harker and O’Leary show in [10]
that the discrete least-squares functional can be minimised by solving a Sylvester
equation, provided Ω is rectangular (this hypothesis is neither required in [6],
nor in the present paper).

Examples of results obtained using the least-squares solver from [10] are
shown in the last column of Figure 1. These experiments illustrate the robust-
ness of least-squares against additive Gaussian noise, but also the edge smoothing
which occurs using quadratic regularisation. As we shall see later, quadratic reg-
ularisation can be improved by introducing weights, or by replacing the squared
L2 norm by a non-differentiable regularisation.

Since the functional (9) is convex, discretising the functional or the asso-
ciated optimality condition should be strictly equivalent, provided the natural
BC is enforced. Yet, as noted by Harker and O’Leary in [11], Poisson-based
integration relying on DCT suffers from a bias, due to inconsistent numerical
approximations of the gradient ∇u in the discretisation of the natural BC (11).
The choice of such inconsistent derivatives, as well as a rectangular domain Ω,
are actually necessary for obtaining a matrix of the block-Toeplitz type, and thus
allowing fast recovery by DCT. Choosing consistent numerical derivatives, or a
non-rectangular domain Ω, the structure of this matrix is lost, and the system
resulting from the discretisation of the continuous optimality condition must be
solved using standard sparse solvers.

In this paper, as in [6,10], we choose to consider discrete functionals so as to
avoid dealing with boundary conditions. Rather than relying on special matrix
structures [10], we use standard solvers for the numerics, allowing us to deal
with non-rectangular domains, as in [6].



2.4 Non-quadratic Regularisations

In [11], Harker and O’Leary extend the method from [10] to the case of spec-
tral and Sobolev regularisations, improving the robustness of their method to
Gaussian noise. Yet, such regularisations are not adapted to depth discontinu-
ities, since they remain quadratic. In [1], Agrawal et al. study several functionals
having the following general form:

FΨ (u) =

∫∫

Ω

Ψ (‖∇u(x, y)− g(x, y)‖2) dx dy (12)

where Ψ is chosen so as to reduce the influence of outliers. A numerical study
of the discrete versions of several such functionals is presented in [5], where the
Jacobi iterations used in [6] are extended to the minimisation of non-convex
functionals through semi-implicit schemes. The use of sparse regularisations de-
rived from the L1 norm has also become an important research direction [4,14]:
we will show how to accelerate such schemes using split-Bregman iterations.
Extension to Lp minimisation, p < 1, is also presented in [2]. The results are in-
deed impressive in the presence of very noisy data, but involve setting numerous
parameters, which is hardly tractable in real-world applications.

Furthermore, since photometric stereo is a technique which is mostly per-
formed inside laboratories, the presence of a huge amount of Gaussian noise in
the measurements is very unlikely, and thus greater care is given in this paper
to outliers such as discontinuities, which cannot be avoided since they describe
the surface itself and not the acquisition procedure. We introduce in the next
section several new functionals related to this issue.

3 New functionals

3.1 Quadratic Prior

The functional (12) is not coercive, because of the ambiguity u 7→ u + k, k
constant, in the initial equation (7). In the literature, this ambiguity is usually
solved a posteriori, for instance by manually setting the mean value of u. In this
work, we proceed this way to first compute an approximate solution u0 through
DCT [16] (if Ω is not rectangular, g has to be completed with null values, which
obviously creates a bias), before introducing u0 as a quadratic prior to force
coercivity.

This prior being biased in the presence of discontinuities and non-rectangular
domains, it can be seen as an initial depth map that we want to denoise using
an edge-preserving regularisation Φ which shall ensure diffusion along g:

FΦ(u) =

∫∫

Ω

Φ (∇u(x, y)− g(x, y)) +
λ

2
(u(x, y)− u0(x, y))

2
dx dy (13)

with λ > 0 chosen according to the quality of the approximate solution u0.
In this paper, we consider three types of regularisation: Φ = w‖.‖22 (weighted
least-squares), Φ = ‖.‖2 (isotropic TV-like), and Φ = ‖.‖1 (L1).



3.2 Weighted Least-squares Functional

In a first approach, we assume that it is possible to a priori detect outliers
through the evaluation of the integrability term (8). This a priori detection is
used to weight the influence of discontinuities. Setting Φ(.) = w||.||22, where w is
a weighting function depending only on the integrability term (8), and not on
u, we obtain the weighted least-squares functional:

FWLS(u)=

∫∫

Ω

w(x, y)‖∇u(x, y)−g(x, y)‖22+
λ

2
(u(x, y)− u0(x, y))

2
dx dy (14)

Since we know that the integrability (8) is an indicator of the presence of
discontinuities (though having null integrability does not imply being smooth:
think of a piecewise flat shape), it seems natural to choose for w an integrability-
based weighting function, which should be a decreasing function of I. To choose
effectively the weights, let us use the continuous optimality condition associated
with FWLS . Assuming w > 0, and remarking that ∇w

w
= ∇(logw), we obtain:

∆u+∇(logw) · (∇u− g)− λ (u− u0) = ∇ · g (15)

Because of the presence of the logarithm, we consider:

w(x, y) = exp(−γ I(x, y)2) (16)

where γ ≥ 0 is a parameter for controlling the weights (γ = 0 corresponds to
the standard least-squares formulation).

We now discretise u uniformly over a grid (which does not need to be rect-
angular, unlike in [7,16,10,11]), with spacing 1, also denoted Ω for convenience.
Extending the rationale in [6] for least-squares functionals, a consistent second-
order accurate discretisation of (14) is obtained by first-order forward differences
in u, and computation of the forward means of the components p and q of g:

FWLS(u)=
∑

(i,j)∈Ωx+

wi,j
(

∂+
x ui,j−p̄i,j

)2
+
∑

(i,j)∈Ωy+

wi,j
(

∂+
y ui,j−q̄i,j

)2
+
λ

2

∑

(i,j)∈Ω

(

ui,j−u
i,j
0

)2

(17)

where we denote ui,j the value of u at discrete point (i, j), p̄i,j = pi+1,j+pi,j

2 ,

q̄i,j = qi,j+1+qi,j

2 , ∂+
x ui,j = ui+1,j − ui,j , ∂+

y ui,j = ui,j+1 − ui,j , Ωx+ = {(i, j) ∈
Ω s.t. (i+ 1, j) ∈ Ω} and Ωy+ = {(i, j) ∈ Ω s.t. (i, j + 1) ∈ Ω}. The optimality
condition in ui,j ∈ Ω reads:

χi+1,jwi,j
(

ui+1,j−ui,j
)

+χi,j+1wi,j
(

ui,j+1−ui,j
)

+χi−1,jwi−1,j
(

ui−1,j−ui,j
)

+χi,j−1wi,j−1
(

ui,j−1−ui,j
)

−
λ

2
ui,j = χi+1,jwi,j p̄i,j + χi,j+1wi,j q̄i,j (18)

− χi−1,jwi−1,j p̄i−1,j − χi,j−1wi,j−1q̄i,j−1 −
λ

2
u
i,j
0

where χ is the characteristic function of Ω. If w is constant and λ = 0, it is easily
verified that (18) is a discrete approximation of both the Poisson equation (10)
and the natural BC (11).



Stacking the ui,j column-wise in a vector u of size n × 1, where n is the
cardinal of Ω, the optimality condition (18) reads as a linear system Au = b,
where A is a block-pentadiagonal n× n full-rank matrix with strictly dominant
diagonal. We experimentally found that, for relatively small grids (up to 512×
512), direct sparse solvers provide a fast solution to this system: since A has a
small bandwidth (equal to the number of rows in Ω), computation of the sparse
product A⊤A is very fast, and the normal equation A⊤Au = A⊤b can be
solved through sparse Cholesky factorisation, though it artificially increases the
order of points involved in the finite differences, leading to a small additional
smoothing (see the numerical results on the peaks dataset in Section 4). Studying
more efficient solvers for this problem, as for instance Krylov subspace methods
applied to the initial Au = b problem, will be the subject of a future research.

3.3 Isotropic TV Functional

The previous approach relies on a priori detection of the discontinuities, so that
the corresponding points are “manually” discarded from the equality (7). Yet, a
priori setting the weights might sometimes be tedious. The weights can also be
automatically chosen as a function of ‖∇u−g‖2 [1,5], but the problem cannot be
solved directly anymore, and requires an iterative minimisation. We show how
to use this idea to minimise a functional resembling the L2-TV model [15].

It is well known in the image processing community that the isotropic to-
tal variation (TV) measure TV (u) =

∫

Ω
‖∇u(x, y)‖2 dxdy has interesting edge-

preserving properties, and tends to favor piecewise-smooth solutions. Consider-
ing the discontinuities as the equivalent of edges in image denoising, one would
expect the residual ∇u− g to be piecewise-smooth as well, with jumps located
in discontinuities. This remark invites us to adapt the ROF model [15] to our
problem: choosing Φ(.) = ‖.‖2, we obtain from (13) the following functional:

FTV (u) =

∫∫

Ω

‖∇u(x, y)− g(x, y)‖2 +
λ

2
(u(x, y)− u0(x, y))

2
dx dy (19)

Remarking that ‖.‖2 = ‖.‖2

‖.‖2
2

‖.‖22, this functional can be minimised through

iteratively reweighted least-squares:














wk(x, y) =
‖∇uk(x, y)− g(x, y)‖2

‖∇uk(x, y)− g(x, y) + θ‖22
, ∀(x, y) ∈ Ω

uk+1=argmin
u

∫

Ω

wk(x, y)‖∇u(x, y)−g(x, y)‖22+
λ

2
(u(x, y)−u0(x, y))

2
dxdy

(20)

with u0 = u0, w
0 = 1, and θ > 0, small. The update in u, using Cholesky fac-

torisation, has already been described in Section 3.2. Proceeding so, the normal
equations are solved at each iteration, as in [1]. As a consequence, few iterations
are needed, though this might become memory-hungry for large grids. Iterative
Jacobi approximations, in the manner of what is proposed in [5], would probably
offer a less memory-hungry solution. Alternatively, split-Bregman iterations can
be considered: we show in the following paragraph how to use such iterations for
minimising the anisotropic TV (L1) model.



3.4 L
1 Functional

The discontinuities being sparsely distributed in essence, it seems natural to
rely on the sparsity enhancing properties of the L1 norm [4,14]. Considering the
choice Φ(.) = ‖.‖1, we get from (13):

FL1(u) =

∫∫

Ω

‖∇u(x, y)− g(x, y)‖1 +
λ

2
(u(x, y)− u0(x, y))

2
dx dy (21)

This new functional is still convex, but cannot be minimised through differ-
entiable optimisation. Split-Bregman iterations [9] can be considered:

uk+1 = argmin
u

α

2
‖dk − (∇u− g)− bk‖22 +

λ

2
‖u− u0‖

2
2 (22)

dk+1 = argmin
d

‖d‖1 +
α

2
‖d− (∇uk+1 − g)− bk‖22 (23)

bk+1 = bk + (∇uk+1 − g)− dk+1 (24)

where (dk,bk) =
(

[dk1 , d
k
2 ]

⊤, [bk1 , b
k
2 ]

⊤
)

are auxiliary variables related to the Breg-
man distance at iteration k. We solve the discrete version of (22) using the same
kind of discretisation as in Section 3.2. Yet, unlike in Section 3.2 and 3.3, it is
preferable not to solve the problem exactly [9], so as to improve convergence
properties of the split-Bregman iterations: as advised in the literature, we per-
form only a few (typically 5) Gauss-Seidel updates at each iteration k. Regarding
the basis pursuit problem (23), solution is obtained by shrinkage:















dk+1
1 =

∂xu
k+1 − p+ bk1

|∂xuk+1 − p+ bk1 |
max

{∣

∣∂xu
k+1 − p+ bk1

∣

∣ , 0
}

dk+1
2 =

∂yu
k+1 − q + bk2

|∂yuk+1 − q + bk2 |
max

{∣

∣∂yu
k+1 − q + bk2

∣

∣ , 0
}

(25)

where |.| is the absolute value.
We now experimentally compare the proposed schemes on synthetic data,

and show results of the L1 approach on real-world datasets.

4 Results

4.1 Synthetic Data

We first evaluate the performances of the proposed algorithms on synthetic
datasets (Figure 2 and Table 1). In each test, a small Gaussian noise with zero-
mean and standard deviation σ = 0.5% of ‖g‖∞ was added to the gradient
field, before it was integrated using, respectively, least-squares [16,10], spectral
regularisation [11], weighted least-squares (λ = 10−5, γ = 10), isotropic TV
(λ = 10−5, θ = 10−3) and L1 (λ = 10−4, α = 0.1). The convergence criterion for
the iterative methods was set to a 5.10−4 relative residual between uk and uk+1.
For fair comparison, the integration constant was changed a posteriori so as to
minimise the RMSE between the estimated depth map and the ground truth.
The performances of each algorithm are evaluated by Matlab codes running on
a I7 laptop at 2.9 Ghz.



Fig. 2. Results on synthetic data. We show the ground truth surface (first row), the
results using spectral regularisation [11] (second row), and those using the weighted
least-squares (third row), TV (fourth row) and L1 (fifth row) functionals. L1 minimisa-
tion qualitatively offers the sharper edges, though a staircase effect appears. Weighted
least squares provide accurate results for the “Canadian Tent”, because the disconti-
nuities correspond to very high integrability values, but it does not perform as well on
the “Synthetic Vase”, since a part of the discontinuity has null integrability.

Peaks Canadian Tent Synthetic Vase
(512× 512) (256× 256) (320× 320)

Least-squares (DCT) [16] 0.30 (0.05 s) 10.76 (0.02 s) 4.55 (0.03 s)
Least-squares (Sylvester) [10] 0.14 (0.84 s) 10.76 (0.32 s) 4.56 (0.46 s)
Spectral regularisation [11] 0.13 (0.22 s) 10.76 (0.12 s) 4.56 (0.15 s)

WLS (Cholesky) 0.16 (2.06 s) 0.42 (0.55 s) 6.81 (0.93 s)
TV (reweighted least-squares) 0.15 (2.27 s) 4.91 (3.77 s) 3.15 (6.70 s)
L1 (split-Bregman) 0.31 (1.82 s) 5.07 (12.85 s) 2.89 (21.09 s)

Table 1. RMSE (in pixels) between the ground truth depth maps and those recovered
using three state-of-the-art algorithms and our three new ones. The “Peaks” depth map
being C∞, all methods succeed at recovering accurate results for this dataset. Since we
solve the normal equation (by means of Cholesky factorisation) in the WLS and TV
approaches, additional smoothing is introduced, and thus these methods perform a
little better than L1 in this test.



4.2 Applications on Real Data

Photometric Stereo. The proposed split-Bregman scheme (Section 3.4) was
applied to real-world gradient fields (the other proposed schemes provide com-
parable results), obtained by applying the photometric stereo technique [17] to
the “Scholar”2 and to the “Beethoven”3 datasets (Figure 3). To emphasize the
discontinuity-preserving properties of the scheme, as well as the staircasing effect
appearing on large flat areas, we applied the method on the whole rectangular
domain, rather than manually segmenting Ω.

It should be noted that a staircasing effect occurs on the background. This
effect is well known and studied in the context of image denoising: adapting the
total generalised variations schemes (TGV) [3], we could probably get rid of it.

Yet, staircasing seems to affect only the background, and should thus not
be considered as a really damaging effect, since our method is able to deal
with non-trivial integration domains (which is not the case in many algorithms
[7,16,10,11]): staircase-free 3D-reconstructions can be obtained by manually seg-
menting the reconstruction domain (Figure 4).

Fig. 3. Photometric stereo. A scene is captured from the same point of view, but
under different lightings (top row), so that the normal field can be revealed using
photometric stereo. By integrating this normal field (split-Bregman iterations), we
obtain the surfaces on the bottom row. The staircase effect is clearly visible in these
examples, though it only affects the background.

2 http://vision.seas.harvard.edu/qsfs/Data.html
3 http://www.ece.ncsu.edu/imaging/Archives/ImageDataBase/Industrial/



Surface Edition. In order to further illustrate the iterative normal integration
through split-Bregman iterations, we consider a surface edition problem, con-
sisting in inserting m small objects, whose gradient fields gi, i = 1 . . .m, are
known over Ωi ⊂ Ω, into a larger object represented by its gradient field g0

over Ω and the corresponding least-squares depth map u0, while preserving thin
details. Setting Ω0 = Ω \

(

∪m
i=1Ω

i
)

, this reads as the minimisation of:

G(u)=

m
∑

i=0

∫∫

Ωi

‖∇u(x, y)−gi(x, y)‖1 dx dy+
λ

2

∫∫

Ω

(u(x, y)−u0(x, y))
2 dx dy

(26)
which is an extension of the Poisson image editing problem [13]. Functionals
(21) and (26) are the same, provided that g =

∑m

i=0 χΩigi, where χΩi is the
characteristic function of Ωi.

Now, we merge both the gradient fields g0 of the “Scholar” dataset (the re-
construction domain Ω is set to the non-rectangular domain of this dataset),
and g1 of the “Beethoven” dataset, so as to replace a small area Ω1 ⊂ Ω of the
reconstructed “Scholar” surface, by Beethoven’s bust. In addition, we would like
to remove some details inside another domain Ω2 ⊂ Ω (Figure 4). To this pur-
pose, we choose g2 = 0: this will perform TV-“inpainting” inside Ω2. Denoting
Ω0 = Ω \

(

Ω1 ∪Ω2
)

, we form the gradient field g =
∑2

i=0 χΩigi, and apply
the proposed split-Bregman scheme. As shown in Figure 4, a detail-preserving
blending of the statues is obtained, while removing the details inside Ω2.

Fig. 4. Surface edition. In the top-left figure, the colored part is Ω, the red part is Ω0

(“Scholar” gradient field), the yellow one is Ω1 (“Beethoven” gradient field), and the
purple one is Ω2 (inpainting area). We show the diffusion process at iterations 0, 10
(fine details begin to appear in the “hair”), 50 (the details inside the inpainted area dis-
appear), 200 and 1000 (stable). Apart from the initialisation u0 using the DCT solver
[16], which required to add the background to Ω with null values of the gradient,
the background was removed from the reconstruction domain: this considerably im-
proves the boundaries of the surface, proving the importance of considering integration
schemes able to deal with non trivial domains.



5 Conclusion and Perspectives

We studied weighted least-squares, TV and L1 functionals in the context of
normal field integration, and provided efficient numerics for minimising these
functionals, through sparse Cholesky factorisation, reweighted least-squares and
split-Bregman iterations, respectively. We experimentally showed that these func-
tionals provide sharp depth maps, and demonstrated how to use them in the
context of photometric stereo and surface edition. In future work, we plan to
accelerate the iterative schemes by multigrid techniques [12], so as to allow real-
time surface reconstruction and edition, and to more deeply study the staircase
effect appearing with L1 minimisation. We believe that introducing higher order
regularisation terms, in the spirit of the total generalised variation regularisation
(TGV) [3], will annihilate this effect, while providing a higher order of accuracy.
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