Global stabilization of a Korteweg-de Vries equation with a distributed control saturated in L 2 -norm
Résumé
This article deals with the design of saturated controls in the context of partial differential equations. It is focused on a Korteweg-de Vries equation, which is a nonlinear mathematical model of waves on shallow water surfaces. The aim of this article is to study the influence of a saturating in L 2-norm distributed control on the well-posedness and the stability of this equation. The well-posedness is proven applying a Banach fixed point theorem. The proof of the asymptotic stability of the closed-loop system is tackled with a Lyapunov function together with a sector condition describing the saturating input. Some numerical simulations illustrate the stability of the closed-loop nonlinear partial differential equation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...