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Abstract: This article deals with the design of saturated controls in the context of partial
differential equations. It is focused on a Korteweg-de Vries equation, which is a nonlinear
mathematical model of waves on shallow water surfaces. The aim of this article is to study the
influence of a saturating in L2-norm distributed control on the well-posedness and the stability
of this equation. The well-posedness is proven applying a Banach fixed point theorem. The
proof of the asymptotic stability of the closed-loop system is tackled with a Lyapunov function
together with a sector condition describing the saturating input. Some numerical simulations
illustrate the stability of the closed-loop nonlinear partial differential equation.
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1. INTRODUCTION

The Korteweg-de Vries equation (KdV for short)

yt + yx + yxxx + yyx = 0, (1)

is a mathematical model of waves on shallow water sur-
faces. Its stabilizability properties have been deeply stud-
ied with no constraints on the control, as reviewed in Cerpa
(2014); Rosier and Zhang (2009). In this article, we focus
on the following controlled KdV equation
yt + yx + yxxx + yyx + f = 0, (t, x) ∈ [0,+∞)× [0, L],

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ [0,+∞),

y(0, x) = y0(x), x ∈ [0, L],
(2)

where y stands for the state and f for the control. As
studied in Rosier (1997), if f = 0 and

L ∈

{
2π

√
k2 + kl + l2

3

/
k, l ∈ N∗

}
, (3)

then, there exist solutions of the linearized version of (2)
written as follows

yt + yx + yxxx = 0,

y(t, 0) = y(t, L) = 0,

yx(t, L) = 0,

y(0, x) = y0(x),

(4)
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for which the L2(0, L)-energy does not decay to zero. For
instance, if L = 2π and y0 = 1 − cos(x) for all x ∈ [0, L],
then y(t, x) = 1 − cos(x) is a stationary solution of (2)
conserving the energy for any time t.

Note however that, if L = 2π and f = 0, the origin of
(2) is locally asymptotically stable as stated in Chu et al.
(2015). Then the nonlinear version of the Korteweg-de
Vries equation has better results in terms of stability than
the linearized one. A similar phenomenon also appears
when studying the controllability of the equation with a
Neumann control (see e.g. Coron and Crépeau (2004) or
Cerpa (2007)).

In the literature there are some methods stabilizing the
KdV equation (2) with boundary control, see Cerpa and
Crépeau (2009); Cerpa and Coron (2013); Marx and Cerpa
(2014) or distributed controls as studied in Pazoto (2005);
Rosier and Zhang (2006).

In this paper, we deal with the case where the control
is saturated. Indeed, in most applications, actuators are
limited due to some physical constraints and the control in-
put has to be bounded. Neglecting the amplitude actuator
limitation can be source of undesirable and catastrophic
behaviors for the closed-loop system. Nowadays, numerous
techniques are available (see e.g. Tarbouriech et al. (2011);
Teel (1992); Sussmann et al. (1994)) and such systems can
be analyzed with an appropriate Lyapunov function and



a sector condition of the saturation map, as introduced in
Tarbouriech et al. (2011) or Zaccarian and Teel (2011).

To the best of our knowledge, there are few papers study-
ing this topic in the infinite dimensional case. Among
them, there are Lasiecka and Seidman (2003), Prieur
et al. (2016), where a wave equation equipped with a
saturated distributed actuator is considered and Daafouz
et al. (2014), where a coupled PDE/ODE system modeling
a switched power converter with a transmission line is
considered and, due to some restrictions on the system,
a saturated feedback has to be designed. There exist also
some papers using the nonlinear semigroup theory and
focusing on abstract systems (Logemann and Ryan (1998),
Seidman and Li (2001), Slemrod (1989)).

In Marx et al. (2015), in which it is considered a linear
Korteweg-de Vries equation with a saturated distributed
control, nonlinear semigroup theory is applied. In the case
of the present paper, since the term yyx is not globally
Lipschitz, such a theory is harder to use. Thus, we aim at
studying a particular nonlinear partial differential equa-
tion without seeing it as an abstract control system and
without using the nonlinear semigroup theory. Moreover,
in the case of the present paper, the saturation is borrowed
from Slemrod (1989) and allows us to give explicitely the
decay rate for bounded initial conditions, although the
saturation used in Marx et al. (2015) is the classical one
and no decay rate is given.

This article is organized as follows. In Section 2, we
present our main results about the well posedness and
the stability of (2) in presence of saturating control.
Sections 3.1 and 3.2 are devoted to prove these results by
using respectively a Banach fixed-point theorem and some
Lyapunov techniques together with a sector condition
describing the saturating input. In Section 4, we give
some simulations of the equation looped by a saturated
feedback law. Section 5 collects some concluding remarks
and possible further research lines.

Notation: yt (resp. yx) stands for the partial derivative
of the function y with respect to t (resp. x). Given L > 0,
‖·‖L2(0,L) denotes the norm in L2(0, L) and H1(0, L) (resp.

H3(0, L)) is the set of all functions u ∈ L2(0, L) such that
ux ∈ L2(0, L) (resp. ux, uxx, uxxx ∈ L2(0, L)). A function
α is said to be a class K function if it is a nonnegative, an
increasing function and if α(0) = 0.

2. MAIN RESULTS

Setting a control f(t, x) = ay(t, x) with a > 0, we
obtain that (2) is stabilized in the L2(0, L)-norm topology.
Indeed, performing some integrations by parts, we obtain,
at least formally

1

2

d

dt

∫ L

0

|y(t, x)|2dx = −|yx(t, 0)|2−a
∫ L

0

|y(t, x)|2dx (5)

and thus

‖y(t, .)‖L2(0,L) ≤ e−at‖y0‖L2(0,L), ∀t ≥ 0. (6)

Let us consider the impact of the constraint on the con-
trol. For infinite-dimensional systems, a way to take into
account this constraint is to use the following saturation
function, that is for all s ∈ L2(0, L) and for all x ∈ [0, L],

sat(s)(x) =


s(x) if ‖s‖L2(0,L) ≤ us,
s(x)us
‖s‖L2(0,L)

if ‖s‖L2(0,L) ≥ us.
(7)

Let us consider the KdV equation controlled by a saturated
distributed control as follows

yt + yx + yxxx + yyx + sat(ay) = 0,

y(t, 0) = y(t, L) = 0,

yx(t, L) = 0,

y(0, x) = y0(x).

(8)

Let us state the main results of this paper.

Theorem 1. [Well posedness] For any initial conditions
y0 ∈ L2(0, L), there exists a unique mild solution y ∈
C(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)) to (8).

Theorem 2. [Global asymptotic stability] Given positive
values a and us, there exists a class K function α : R≥0 →
R≥0 such that for a given y0 ∈ L2(0, L), the mild solution
y to (8) satisfies,

‖y(t, .)‖L2(0,L) ≤ α(‖y0‖L2(0,L))e
−at, ∀t ≥ 0. (9)

Moreover, for bounded initial conditions, we could estimate
the decay rate of the solution. In other words, given a
positive value r, for any initial condition y0 ∈ L2(0, L)
such that ‖y0‖L2(0,L) ≤ r, any mild solution y to (8)
satisfies,

‖y(t, .)‖L2(0,L) ≤ ‖y0‖L2(0,L)e
−µt, ∀t ≥ 0, (10)

where µ is defined as follows

µ := min
{
a,
us
r

}
. (11)

By a scaling, we may assume, without loss of generality,
that either a or us is 1. However, Theorem 2 shows that
saturating a controller insuring a rapid stabilization makes
the origin globally asymptotically stable. We cannot select
anymore the decay rate of the convergence.

3. PROOF OF THE MAIN RESULTS

3.1 Well-posedness

Linear system. Before proving the well-posedness of (8),
let us recall some useful results on the linear system (4).
To do that, consider the operator defined by

D(A) = {w ∈ H3(0, L), w(0) = w(L) = w′(L) = 0},
A : w ∈ D(A) ⊂ L2(0, L) 7−→ (−w′ − w′′′) ∈ L2(0, L).

It is easy to prove that A generates a strongly continuous
semigroup of contractions which we will denote by W (t).
We have the following theorem proven in Rosier (1997)

Theorem 3. [Well-posedness of (4), Rosier (1997)] For
any initial conditions y0 ∈ L2(0, L), there exists a unique
mild solution y ∈ C(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)) to
(4). Moreover, there exists C > 0 such that the solution to
(4) satisfies

‖y‖C(0,T ;L2(0,L)) + ‖y‖L2(0,T ;H1(0,L)) ≤ C1‖y0‖L2(0,L)

(12)
and the extra regularity

‖yx(., 0)‖L2(0,T ) ≤ ‖y0‖L2(0,L). (13)

To ease the reading, let us denote the following Banach
space, for all T > 0,

B(T ) := C(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L))



endowed with the norm

‖y‖B(T ) = sup
t∈[0,T ]

‖y(t, .)‖L2(0,L)+

(∫ T

0

‖y(t, .)‖2H1(0,L)dt

) 1
2

(14)

Before studying the well-posedness of (8), we need a well-
posedness result with a right-hand side. Thus, given g ∈
L1(0, T ;L2(0, L), let us consider y the unique solution 1

to the following inhomogeneous problem:
yt + yx + yxxx = g,

y(t, 0) = y(t, L) = 0,

yx(t, L) = 0,

y(0, .) = y0.

(15)

Note that we need the following property on the saturation
function, which will allow us to state that this type of
nonlinearity belongs to the space L1(0, T ;L2(0, L)).

Lemma 1. [Slemrod (1989), Theorem 5.1.] For all (s, s̃) ∈
L2(0, L)2, we have

‖sat(s)− sat(s̃)‖L2(0,L) ≤ 3‖s− s̃‖L2(0,L). (16)

Let us now state the following properties on the nonhomo-
geneous linearized KdV equation (15).

Firstly, we have this proposition borrowed from (Rosier,
1997, Proposition 4.1)

Proposition 1. [Rosier (1997)] If y ∈ L2(0, T ;H1(0, L)),
then yyx ∈ L1(0, T ;L2(0, L)) and the map ψ1 : y ∈
L2(0, T ;H1(0, L)) 7→ yyx ∈ L1(0, T ;L2(0, L)) is contin-
uous.

Secondly, we have the following proposition

Proposition 2. If y ∈ L2(0, T ;H1(0, L)), then sat(ay) ∈
L1(0, T ;L2(0, L)) and the map ψ2 : y ∈ L2(0, T ;H1(0, L)) 7→
sat(ay) ∈ L1(0, T ;L2(0, L)) is continuous.

Proof. Let y, z ∈ L2(0, T ;H1(0, L)). We have, using
Lemma 1 and Hölder inequality

‖sat(ay)− sat(az)‖L1(0,T ;L2(0,L)),

≤ 3

∫ T

0

a‖(y − z)‖L2(0,L),

≤ 3La
√
T‖(y − z)‖L2(0,T ;H1(0,L)). (17)

Plugging z = 0 in (17) yields sat(ay) ∈ L1(0, T ;L2(0, L))
and using (17) gives the continuity of the map ψ2. It
concludes the proof of Proposition 2. •
Finally, we have this result borrowed from (Rosier, 1997,
Proposition 4.1)

Proposition 3. [Rosier (1997)] For g ∈ L1(0, T ;L2(0, L))
and y0 ∈ L2(0, L), the mild solution of (15) belongs to
B(T ). Moreover the map ψ3 : g ∈ L1(0, T ;H1(0, L)) 7→
y ∈ B(T ) is continuous.

Proof of Theorem 1 We are now in position to prove
Theorem 1. Let us begin this section with a technical
lemma.

1 It follows from the semigroup theory the existence and the unicity
of y when g ∈ L1(0, T ;L2(0, L) (see (Pazy, 1983, Chapter 4)).

Lemma 2. [(Chapouly, 2009, Lemma 18)] For any T > 0
and y, z ∈ B(T ),∫ T

0

‖(y(t, .)z(t, .))x‖L2(0,L)dt ≤ 2
√
T‖y‖B(T )‖z‖B(T )

(18)

Let us now state our local well-posedness result.

Lemma 3. [Local well-posedness of (8)] Let T > 0, be
given. For any y0 ∈ L2(0, L), there exists T ′ ∈ [0, T ]
depending on y0 such that (8) admits a unique solution
y ∈ B(T ′).

Proof. We follow the strategy of Chapouly (2009) and
Rosier and Zhang (2006). From Propositions 1, 2 and 3,
we know that, for all z ∈ L2(0, T ;H1(0, L)), there exists a
unique solution y in B(T ) to the following equation

yt + yx + yxxx = −zzx − sat(az),

y(t, 0) = y(t, L) = 0,

yx(t, L) = 0,

y(0, x) = y0(x).

(19)

Solution y to (19) can be written in its integral form

y(t) =W (t)y0 −
∫ t

0

W (t− τ)(zzx)(τ)dτ

−
∫ t

0

W (t− τ)sat(az(τ, .))dτ

(20)

For given y0 ∈ L2(0, L), let r and T ′ be positive values to
be chosen. Let us consider the following set

ST ′,r = {z ∈ B(T ′), ‖z‖B(T ′) ≤ r}, (21)

which is a closed, convex and bounded subset of B(T ′).
Consequently, ST ′,r is a complete metric space in the
topology induced from B(T ). We define the map Γ on ST ′,r

by, for all z ∈ ST ′,r

Γ(z) :=W (t)y0 −
∫ t

0

W (t− τ)(zzx)(τ)dτ

−
∫ t

0

W (t− τ)sat(az(τ, .))dτ, ∀z ∈ ST ′,r.

(22)

We aim at proving the existence of a fixed point for this
operator.

It follows immediatly from (17), Lemma 2 and the linear
estimates written in Theorem 3 that, for every z ∈ ST ′,r,
there exist positive values C2 and C3 such that

‖Γ(z)‖B(T ′) ≤C1‖y0‖L2(0,L) + C2

√
T ′‖z‖2B(T ′)

+ C3

√
T ′‖z‖B(T ′)

(23)

We choose r > 0 and T ′ > 0 such that r = 2C1‖y0‖L2(0,L)

C2

√
T ′r + C3

√
T ′ ≤ 1

2

(24)

in order to obtain

‖Γ(z)‖B(T ′) ≤ r, ∀z ∈ ST ′,r. (25)

Thus, with such r and T ′, Γ maps ST ′,r to ST ′,r. Moreover,
one can prove with the same inequalities that

‖Γ(z1)− Γ(z2)‖B(T ′) ≤
1

2
‖z1 − z2‖B(T ′), ∀(z1, z2) ∈ S2

T ′,r

(26)



The existence of the solutions to the Cauchy problem (8)
follows by using the Banach fixed point theorem (Brezis,
2011, Theorem 5.7). •
We need the following Lemma inspired by Coron and
Crépeau (2004) and Chapouly (2009) which implies that
if there exists a solution for all T > 0 then the solution is
unique.

Lemma 4. For any T > 0 and a > 0, there exists
C4(T, L) such that for every y0, z0 ∈ L2(0, L) for which
there exist mild solutions y and z to

yt + yx + yxxx + yyx + sat(ay) = 0,

y(t, 0) = y(t, L) = 0,

yx(t, L) = 0,

y(0, x) = y0(x),

(27)

and 
zt + zx + zxxx + zzx + sat(az) = 0,

z(t, 0) = z(t, L) = 0,

zx(t, L) = 0,

z(0, x) = z0(x),

(28)

one has the following inequalities∫ T

0

∫ L

0

(zx(t, x)− yx(t, x))2dxdt

≤ eC4(1+‖y‖L2(0,T ;H1(0,L))+‖z‖L2(0,T ;H1(0,L)))

∫ L

0

(z0 − y0)2dx,

(29)∫ T

0

∫ L

0

(z(t, x)− y(t, x))2dxdt

≤ eC4(1+‖y‖L2(0,T ;H1(0,L))+‖z‖L2(0,T ;H1(0,L)))

∫ L

0

(z0 − y0)2dx.

(30)

Proof. Due to space limitation the proof has not been
written. The interested reader can however refer to Coron
and Crépeau (2004) and Chapouly (2009) where proofs of
very similar results are provided. •
We aim at removing the smallness condition given by T ′

in Lemma 3. Since we have the local well-posedness, we
only need to prove the following a priori estimate for any
solution to (8).

Lemma 5. For given T > 0, there exists K := K(T ) > 0
such that for any y0 ∈ L2(0, L), for any 0 < T ′ ≤ T and
for any mild solution y ∈ B(T ′) to (8), it holds

‖y‖B(T ′) ≤ K‖y0‖L2(0,L). (31)

Proof. Let us fix 0 < T ′ ≤ T . Let us multiply the first
line of (8) by y and integrate on (0, L). Using the boundary
conditions in (8), we get the following estimates∫ L

0

yyxdx = 0,

∫ L

0

yyxxxdx =
1

2
|yx(t, 0)|2,∫ L

0

y2yxdx = 0.

Using the fact that sat is odd, we get that

1

2

d

dt
‖y(t, .)‖2L2(0,L) ≤ −

1

2
|yx(t, 0)|2 −

∫ L

0

ysat(ay)dx ≤ 0

(32)

and consequently

‖y‖L∞(0,T ′;L2(0,L) ≤ ‖y0‖L2(0,L). (33)

It remains to prove a similar inequality for

‖yx‖L2(0,T ′;L2(0,L)),

to achieve the proof. To do that, we multiply by xy (8),
integrate on (0, L) and use the following∫ L

0

xyyxdx = −1

2
‖y‖2L2(0,L),

∫ L

0

yyxxxdx =
3

2
‖yx‖2L2(0,L),

−
∫ L

0

xy2yxdx =

∣∣∣∣∣13
∫ L

0

y3(t, x)dx

∣∣∣∣∣ ,
≤ 1

3
sup

x∈[0,L]
|y(t, x)|‖y‖2L∞(0,T ′;L2(0,L)),

≤
√
L

3
‖yx‖L2(0,L)‖y‖2L∞(0,T ′;L2(0,L)),

≤
√
Lδ

6
‖yx‖L2(0,L) +

√
L

6δ
‖y‖4L∞(0,T ′;L2(0,L)),

(34)

where δ is chosen such that δ := 3√
L

. In this way, we have

1

2

d

dt

∫ L

0

|x1/2y(t, .)|2dx− 1

2

∫ L

0

y2dx+
3

2

∫ L

0

|yx|2dx

−
∫ L

0

xy2yxdx = −
∫ L

0

xsat(ay)ydx.

(35)

We get using (34) and the fact that sat is odd

1

2

d

dt

∫ L

0

|x1/2y(t, .)|2dx+

∫ L

0

|yx|2dx ≤

1

2
‖y‖2L∞(0,T ′;L2(0,L)) +

L

18
‖y‖4L∞(0,T ′;L2(0,L)).

(36)

Using (33) and a Grönwall inequality, we get the existence
of a positive value C5 = C5(L) > 0 such that

‖yx‖L2(0,T ′;L2(0,L)) ≤ C5‖y0‖L2(0,L), (37)

which concludes the proof of Lemma 5. •
Using Lemmas 3, 4 and 5, for any T > 0, we can conclude
that there exists a unique mild solution in B(T ) to (8).
Indeed, with Lemma 3, we know that there exists T ′ ∈
(0, T ) such that there exists a unique solution to (8) in
B(T ′). Lemma 4 states that if there exists a solution to
B(T ), then it is unique. Finally, Lemma 5 allows us to state
the well-posedness for every T > 0: since the solution y to
(8) is bounded by its initial condition for every T ′ > 0
belonging to [0, T ] as stated in (32), we know that there
exists an unique solution to (8) in B(T ). This concludes
the proof of Theorem 1. 2

3.2 Stability

This section is devoted to the proof of Theorem 2. We need
then to prove this lemma.

Lemma 6. System (8) is semi-globally exponentially sta-
ble in L2(0, L). In other words, for any r > 0 there exists
a positive constant µ given in Theorem 2 such that for any
y0 ∈ L2(0, L) satisfying ‖y0‖L2(0,L) ≤ r, the mild solution
y = y(t, x) to (8) satisfies

‖y(t, .)‖L2(0,L) ≤ ‖y0‖L2(0,L)e
−µt ∀t ≥ 0. (38)



From this result, we will be able to prove the global
asymptotic stability of (8), as done at the end of this
section. Note moreover that this result is indeed the second
part of Theorem 2.

Technical lemma. Before starting the proof of the
Lemma 6, let us state and prove the following lemma

Lemma 7. [Sector condition] Let r be a positive value.
Given a positive value a and s ∈ L2(0, L) such that
‖s‖L2(0,L) ≤ r, we have

β(x) :=
(

sat(as)(x)− k(r)as(x)
)
s(x) ≥ 0, ∀x ∈ [0, L],

(39)
with

k(r) = min
{us
ar
, 1
}
. (40)

Proof. Consider the two following cases

1. ‖as‖L2(0,L) ≥ us;
2. ‖as‖L2(0,L) ≤ us.

The first case implies that, for all x ∈ [0, L]

sat(as)(x) =
as(x)

‖as‖L2(0,L)
us.

Thus, for all x ∈ [0, L]

β(x) = as(x)2
(

us
‖as‖L2(0,L)

− k(r)

)
. (41)

Since we have
us

‖as‖L2(0,L)
≥ us
ar
≥ k(r),

then, we obtain

β(x) ≥ 0.

The second case implies that, for all x ∈ [0, L]

sat(as)(x) = as(x)

We obtain that

β(x) := (1− k(r))as(x)2 ≥ 0.

It concludes the proof of Lemma 7. •

Semi-global exponential stability. Now we are able to
prove Lemma 6. Let r be a positive value such that
‖y0‖L2(0,L) ≤ r.

Note that from (32), we get

‖y‖L2(0,L) ≤ ‖y0‖L2(0,L)

≤ r (42)

With the Lemma 7 and (32), we obtain

1

2

d

dt

∫ L

0

|y(t, x)|2dx ≤ −
∫ L

0

k(r)a|y(t, x)|2dx (43)

Thus, with (40), applying the Grönwall lemma leads to

‖y(t, .)‖L2(0,L) ≤ e−µt‖y0‖L2(0,L) (44)

where µ is defined in the statement of Theorem 2. There-
fore, it concludes the proof of Lemma 6. 2

Proof of Theorem 2 We are now in position to prove
Theorem 2, inspired by Rosier and Zhang (2006).

Proof. By Lemma 6 and (32), if

‖ỹ0‖L2(0,L) ≤
us
a
, (45)

then, by dissipativity, we have ‖ỹ(t, .)‖L2(0,L) ≤ us

a for all
t ≥ 0. Thus, sat(aỹ) = aỹ and we know, from (6), that the
corresponding solution ỹ to (8) satisfies

‖ỹ(t, .)‖L2(0,L) ≤ ‖ỹ0‖L2(0,L)e
−at ∀t ≥ 0. (46)

In addition, for a given r > 0, there exists a positive con-
stant µ, which is given in (11), such that if ‖y0‖L2(0,L) ≤ r,
then any mild solution y to (8) satisfies

‖y(t, .)‖L2(0,L) ≤ ‖y0‖L2(0,L)e
−µt ∀t ≥ 0 (47)

Consequently, setting Tr := µ−1 ln
(
ar
us

)
, we have

‖y0‖L2(0,L) ≤ r ⇒ ‖y(Tr, .)‖L2(0,L) ≤ e− ln( ar
us

)r =
us
a

Therefore, using (46), we obtain

‖y(t, .)‖L2(0,L) ≤ ‖y(Tr, .)‖L2(0,L)e
−a(t−Tr), ∀t ≥ Tr

≤ ‖y0‖L2(0,L)e
aTre−at, ∀t ≥ 0.

Thus it concludes the proof of Theorem 2. •

4. SIMULATION

Let us discretize the PDE (8) by means of finite difference
method (see e.g. Pazoto et al. (2010) for an introduction
on the numerical scheme of a generalized Korteweg-de
Vries equation). The time and the space steps are chosen
such that the stability condition of the numerical scheme
is satisfied (see Pazoto et al. (2010) where this stability
condition is clearly established).

Given y0(x) = 1 − cos(x), L = 2π, a = 1 and Tfinal = 6,
Figure 1 shows the solution to (8) and with the unsatu-
rated control f = ay. Figure 2 illustrates the simulated
solution with the same initial condition and a saturated
control f = sat(ay) where us = 0.5. The evolution of the
L2-energy of the solution in these two cases is given by
Figure 3.

Fig. 1. Solution y(t, x)
with a feedback law
f = ay.

Fig. 2. Solution y(t, x)
with a feedback f =
sat(ay) where us =
0.5.

5. CONCLUSION

In this paper, we have studied the well-posedness and
the asymptotic stability of a Korteweg-de Vries equation
with a saturated distributed control. The well-posedness
issue has been tackled by using the Banach fixed-point
theorem and we proved the stability by using a sector
condition and Lyapunov theory for infinite dimensional



Fig. 3. Blue: Time evolution of the energy function
‖y‖2L2(0,L) with a saturation us = 0.5 and a =

1. Red: Time evolution of the theoritical energy
‖y0‖2L2(0,L)e

−2µt. Dotted line: Time evolution of the

solution without saturation and a = 1.

systems. Two questions may arise in this context. In Marx
et al. (2015), an other saturation function is used. Is the
equation with a control saturated with such a function still
globally asymptotically stable? Some boundary controls
have been already designed in Cerpa and Coron (2013),
Coron and Lü (2014), Tang and Krstic (2013) or Cerpa
and Crépeau (2009). By saturating this controllers, are
the corresponding equations still stable?
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