Algebraic and geometric properties of equilibria in cyclic switched dynamic systems - Archive ouverte HAL
Article Dans Une Revue International Journal of Robust and Nonlinear Control Année : 2016

Algebraic and geometric properties of equilibria in cyclic switched dynamic systems

Résumé

The analysis of some properties for the equilibria of switched dynamic systems is addressed. In particular, the geometric properties of the equilibrium region in state space and the algebraic properties of the equations defining it are studied. Based on fundamental results from algebraic geometry the equilibria properties of switched dynamic systems is analyzed. This alternative approach allows to obtain information about the set of equilibrium points without explicitly computing it. This study is developed for three different formulations of switched dynamic systems, revealing some interesting algebraic and geometric relations in their corresponding equilibria. Some examples, including the case of a power converter, are presented for illustration purposes.
Fichier principal
Vignette du fichier
AlgGeomEqu.pdf (2.12 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01360201 , version 1 (21-10-2024)

Identifiants

Citer

Gerardo de Jesus Becerra, Diego Patino, Minh Tu Pham, Xuefang Lin-Shi. Algebraic and geometric properties of equilibria in cyclic switched dynamic systems. International Journal of Robust and Nonlinear Control, 2016, ⟨10.1002/rnc.3679⟩. ⟨hal-01360201⟩
126 Consultations
4 Téléchargements

Altmetric

Partager

More