Multivariate Autoregressive Model Constrained by Anatomical Connectivity to Reconstruct Focal Sources - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Multivariate Autoregressive Model Constrained by Anatomical Connectivity to Reconstruct Focal Sources

Résumé

In this paper, we present a framework to reconstruct spatially localized sources from Magnetoencephalogra-phy (MEG)/Electroencephalography (EEG) using spatiotempo-ral constraint. The source dynamics are represented by a Mul-tivariate Autoregressive (MAR) model whose matrix elements are constrained by the anatomical connectivity obtained from diffusion Magnetic Resonance Imaging (dMRI). The framework assumes that the whole brain dynamic follows a constant MAR model in a time window of interest. The source activations and the MAR model parameters are estimated iteratively. We could confirm the accuracy of the framework using simulation experiments in both high and low noise levels. The proposed framework outperforms the two-stage approach.
Fichier principal
Vignette du fichier
root.pdf (843.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01357167 , version 1 (29-08-2016)

Licence

Identifiants

  • HAL Id : hal-01357167 , version 1

Citer

Brahim Belaoucha, Mouloud Kachouane, Théodore Papadopoulo. Multivariate Autoregressive Model Constrained by Anatomical Connectivity to Reconstruct Focal Sources. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug 2016, Orlando, United States. ⟨hal-01357167⟩
354 Consultations
215 Téléchargements

Partager

More