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Multivariate Autoregressive Model Constrained by Anatomical
Connectivity to Reconstruct Focal Sources

Brahim Belaoucha', Mouloud Kachouane'>? and Théodore Papadopoulo®

Abstract—1In this paper, we present a framework to recon-
struct spatially localized sources from Magnetoencephalogra-
phy (MEG)/Electroencephalography (EEG) using spatiotempo-
ral constraint. The source dynamics are represented by a Mul-
tivariate Autoregressive (MAR) model whose matrix elements
are constrained by the anatomical connectivity obtained from
diffusion Magnetic Resonance Imaging (AMRI). The framework
assumes that the whole brain dynamic follows a constant MAR
model in a time window of interest. The source activations
and the MAR model parameters are estimated iteratively. We
could confirm the accuracy of the framework using simulation
experiments in both high and low noise levels. The proposed
framework outperforms the two-stage approach.

I. INTRODUCTION

EEG and MEG are two non-invasive modalities that allow
us to measure brain activity with high temporal resolution.
Obtaining the distributed sources activation from these mea-
surements is an under-determined problem due to the small
number of measurements with respect to the number of
sources. To obtain a unique solution, different constraints
can be added [1]. These can be divided into three different
categories: spatial, temporal, and spatiotemporal constraints.

There are several studies that show that the reconstruction
improves when including spatiotemporal constraints [2], [3].
In this work, we assume that the source signals follow
a multivariate autoregressive (MAR) model. Fukushima et
al. [3] proposed a MAR model in which matrix elements
depend on the anatomical connectivity, but their method is
time-consuming and hard to implement. Other studies, [4],
[5], assume that sources increase or decrease by the same
factor or interact with only their direct neighbors. These
assumptions significantly reduce the degrees of freedom of
the dynamics. We provide more degrees of freedom by
allowing source interactions constrained by anatomical con-
nectivity obtained from dMRI information. This allows us to
generalize our work to the whole brain. Focal reconstructions
are important because they are consistent with the notion
of functional specialization of small cortical regions. Focal
Underdetermined System Solver (FOCUSS) [6] is used to
detect spatially localized sources. It is applied to each time
sample and tends to set to zero sources with low activation
at each time sample. This makes it unsuitable for MAR
parameter estimation. Our framework estimates the source
activation and the MAR parameters iteratively. This approach
corrects the false activation and functional connections that
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can be obtained by two-stage approaches when working with
low signal-to-noise ratio (SNR).

We have developed a framework constrained by a temporal
dynamic over the whole brain to reconstruct sources. The
source dynamics represented by the MAR model is based on
the underlying anatomical connections obtained from dMRI
information. Through simulations at different noise levels,
we compare the accuracy of the proposed framework in the
source reconstruction and MAR model parameters estimation
with the ones obtained from a non-dynamical sparse solution
based on mixed-norm estimates (MxNE) [7]. Our framework
uses the MxNE estimates to initialize the source intensities
then estimates the MAR entries iteratively.

II. DATA ACQUISITION AND PROCESSING

Structural and diffusion MRI data were taken from Wake-
man et al. [8]. Cambridge University Psychological Ethics
Committee approved all experimental procedures involving
human subjects [8]. The T1 weighted images of size 256 x
256 x 192 were acquired by a Siemens 3T Trio with GRAPPA
3D MPRAGE sequence (TR = 2250 ms; TE = 2.99 ms;
flip-angle = 9°; acceleration factor = 2) at 1 mm isotropic
resolution. The diffusion weighted images of size 9696 x 68
were collected by the same scanner at 2 mm isotropic
resolution (64 gradient directions and b-value =1000 s/mm?),
with one b0 image. The cortical surface was extracted
using Freesurfer [9] from T1 and remeshed to 2003 vertices
(sources). The transformation between the anatomical and
diffusion space was obtained by registering the brain in the
two spaces using FSL [10]. The MEG/EEG forward problem,
based on Boundary Element Method (BEM), is obtained
using OpenMEEG [11], [12].

III. STRUCTURAL CONNECTIVITY

The structural connectivity of the sources (nodes on the
mesh) is obtained from the dMRI information. Each node in
the cortical mesh is considered as a seed. For each seed, we
compute the connectivity profile, i.e. its connectivity with
every voxel in the diffusion image space. Connectivity pro-
files are obtained by running probabilistic tractography for
all seeds. We assume a model of multiple fiber orientations
for each voxel developed in FSL [14] with 5 x 103 samples.
The connectivity between node 7 and j, c;;, is the number of
samples that were drawn from ¢ and arrived at j divided by
the total number of samples. C'M is the connectivity matrix
with elements C'M (i, j) = max(c;;, ¢j;). The source ¢ and
j are considered to be structurally connected if CM (i, j) >



cin. We set ¢, to 0.1 to remove weak connections. We
obtained 3935 anatomical connections.

IV. ALGORITHM

The EEG/MEG measurements (M € R™*T) are related
to the brain sources (J € R™*T) by the following linear
relationship;

M=GJ +e€,

where n and m are the number of sensors and sources
respectively, 7' is the length of the time window, € is
Gaussian observation noise and G € R™*™ is the lead field
matrix. We assume that the sources (.J;) at time ¢ are related
to their past values by:

Jy=Adi1 +we,

where A is the MAR matrix and w; is Gaussian generator
noise. The elements of the MAR matrix are constrained by
the structural connectivity obtained from dMRI information.
The only non-zero elements of A represent anatomically con-
nected source pairs including self-connections. The dynamics
of the model depend on the eigenvalues of A. The sources
can be obtained by minimizing the following functional;

1
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where U is some prior on sources and A\ is a positive
regularization parameter. In focal activation, most of the
sources are inactive. This sparsity can be obtained by putting
U(J) = ||J]|4y, where ||J|lo; = >, v/ J¢+(4)%. This norm,
l12, induces sparsity over the time window i.e. the sites of
active sources will be the same over the entire time window
of interest. The solution of Eq. (1) is called the mixed-
norm estimate (MXNE). More details about the MXxNE can
be found in [7]. To enhance the solution of the mixed-norm
solution in low SNR values and to estimate the functional
connectivity which is represented by the MAR model, we
introduce an iterative framework. The MAR matrix, A, is
estimated over a time window of interest by minimizing D:

D(A) = |1, 7 — Ado, 715 |

where Ji 7 and Jy 7_; are the values of the sources in a
time window of 7' samples. This can be rewritten as;

D(A) = |31, 7 — J*A|2, )

where A = vec(A) and Jq, 7 = vec(J1, 7) and
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where O7 ., 1S a T X m zero matrix and (-/) is the transpose
operator. The solution of Eq. (2) is;

A= (T N, 3)

Because of the block of zeros in J*, it is possible to estimate
separately each row A; of A:

A; = (JO,TflJ(/),Tfl)_ljo,Tfljl,T(i) 1€ {17 ..,m},
where J; 7(i) is the i'" row of J;_r. To estimate the source
intensities and their interaction iteratively, we replace Ji 7
by AJy, r—1 in the data fit term of Eq. (1) and U(J) by
U(Jo, 7—1). Eq. (1) becomes:

E(Jo,7-1) = % |M1, 7 — GAJo, m—1ll3 + M| Jo, =115,
“)
The framework, iterative Source and Dynamics Recon-
struction (iSDR), is explained in Algorithm 1. We start by
initializing the MAR matrix A with the identity (1), J with
the MxNE solution and the maximum number of iterations
N. In step 4, we estimate the sources by optimizing Eq. (1).
Then A is updated by Eq. (3) in steps 6-8. The algorithm
stops iterating if there is a small change in the data fit error,
RSS = [|[Myr — GAJo, 71|, or after N iterations. The
difference between Eq. (4) and Eq. (1) (MxNE) is that the
lead field matrix, G, is multiplied by the MAR matrix, A. The
columns and rows of A corresponding to inactive sources are
set to zero in step 7. This allows the framework to reduce the
effect of inactive sources on the measurements, i.e. reduce
the number of unknowns resulting in better estimation of the
source activation.

Algorithm 1 iterative Source and Dynamics Reconstruction (iSDR)
1: procedure iSDR(G, M, N)

2: Initialize:
A« I, (n,m) < shape(G), ¢
3 for i=1:N do
4 Jor_1 + arg ming, . (E) > Estimate .J
5: jT «— zzle_l
6: for j=1:m do > Update A
7 A; — (Jo,TflJ(;,T,l)_lJo,TAJLT(j)
8 end for
o RSS « HMLT - GAJH2
10: if RSS? — RSS! < ¢ then
11: break
12: end if
13: end for

14: return J, A
15: end procedure

V. RESULTS AND DISCUSSION

We used a realistic three layers head model. 70 EEG
electrodes were considered. To test the framework, we first
obtain the structural connectivity from the dMRI as explained
in section III. Then, we investigate the parameter estimation
accuracy of the proposed framework by using simulated data
generated from a simple MAR model. Four sources (S1, 52,
53, and S4) are located in the Occipital lobe, see Fig. 1 (a)
and connected anatomically, see Fig. 1 (b). We activated S1
and S2 while S3, 5S4, and the other sources are inactive. We
decided not to activate S3 and S4 to investigate the effect
of the assumption that the sources functionally interact if
they are anatomically connected. S1 and S3 are anatomically
connected but functionally independent.
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Fig. 1: Location of the simulated sources on the inflated cortical
surface (a) and their anatomical connections (b), only the connec-
tions between the four sources. The magnitude of the simulated
sources (c), sampling frequency equal to 1 KHz.

J(S1)  =0.96J,_1(S1) + 0.25.J,_1(52)
Jp(52) = —0.25J,_1(51) 4 0.95J;_1(52)

with Jy(S1) = —Jp(52) =5 nAm (nano Ampere), the simu-
lated sources can be seen in Fig. 1 (c). The MAR matrix has
two non-zero eigenvalues 0.955 £ 0.25j. The regularization
parameter, A, is fixed by a 3-fold cross validation [13].

We simulate sources in low and high SNR. The simulated
measurements were obtained from the simulated sources
(Fig. 1 (c)) multiplied by the lead field matrix, GG, and we
added a Gaussian observation noise [SNR: 40, +5 dB] of
zero mean. The source reconstruction of MXNE can be seen
in Fig. 2 (a) to (c). Fig. 2 (d) shows the estimated eigenvalues
using two-stage approach (MxNE then Eq. (3)) at SNR equal
to 5 dB. Fig. 2 (e) to (g) represent the result of the proposed
method at different noise levels.

Fig. 2 (h) to (j) show the true, in black, and the estimated,
in red, eigenvalues by the proposed framework of the MAR
matrix in polar coordinates at different noise levels and for
100 runs. The majority of the eigenvalues are estimated to
be zero, this can be guessed clearly from the reconstructions
of the iterative approach at the different noise levels, Fig. 2
(e) to (g), in which the framework detected the true inactive
sources (the corresponding MAR coefficients equal to zero).
Fig. 2 (k) and (1) represent the mean over 100 runs of the
estimated functional interactions between the four sources at
SNR equal to +5 dB.

The reconstruction error between the estimated sources
and the ground truth, J—J , of the MxNE estimates and

the proposed framework (iSDl%) at different noise levels is

40 dB 5dB -5 dB
mean std mean std mean std
MxNE | 11.19 | 0.008 | 38.45 | 0.47 237 2.59
iSDR 0.15 | 0.0045 | 5.01 0.19 | 1531 | 0.61

TABLE I: The mean and standard deviation (std) of the reconstruc-
tion error over 100 runs at different noise levels (SNR ={40,5,-5}
dB). The values are in nAm.

shown in Table 1. The mean error is computed over 100 runs
at the different noise levels. The iSDR enhances significantly
the mixed-norm estimates solution especially at low SNR
settings, compare Fig. 2 (b) with (f) and (c) with (g) and see
the last column of Table 1.

The iSDR provides accurate results because MxNE sets
sources to zero in the whole time window of interest. This
results in rows and columns of zeros in the MAR matrix,
step 7 in Algorithm. In the next iteration, A, with the zero
columns and rows, is multiplied by G. This is equivalent to
removing some generators from the source space resulting
in a better approximation. The number of iterations, N, is
inversely proportional to noise level i.e. high NV value for
low SNR.

The two-stage approach found false-positive active sources
in low SNR, Fig. 2 (b) and (c), which result in false
functional connections. This is the limitation of two-stage
approximation of the MAR model. The iterative framework
could correct the false activation, see Fig. 2 (f) and (g). It
could detect the correct connections between the sources for
SNR > 5 dB (Fig. 2 (k)) and it underestimates the MAR
coefficients for 5 > SNR > -5 dB (Fig. 2 (1)) because of the
noise but they are still close to the ground truth.

In this paper, we present an iterative framework for EEG
and MEG source reconstruction constrained by a whole
brain dynamics model based on dMRI information. In our
simulation study, the proposed framework correctly recon-
structed sources and estimated the MAR elements, while the
non-dynamical two-stage approach based on MxNE solution
detects false-positive sources resulting in false functional
connections. The framework assumes that the source dy-
namics is constant over a time window of 7' samples. The
optimal number of samples needed to estimate the MAR
entries is proportional to the maximal number of anatomical
connections per source. It is hard for the framework to detect
sources that have small activation in time and duration. Like
all initialization dependent approaches, the initialization has
to be within some proximity to the true sources, in order to
find the correct activation. This means that as long as the
initial active set contains true active sources, we are able to
recover correct activations and interactions.

Representing the source dynamics by linear autoregressive
modeling would introduce errors to the estimated functional
interactions for sources with non-linear relationships. In this
work, we dealt with focal sources. Extended generators
(constant activation per region) can be assumed on regions
obtained from dMRI-based parcellation [3], [14] in the pro-
posed framework. Higher-order MAR model can be assumed.
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Fig. 2: The source reconstruction using mixed-norm estimates at SNR equal to (a) 40 dB, (b) 5dB and (c) -5dB. The estimated eigenvalues
of A using two-stage approach , i.e MxNE then Eq. (3) in (d). The source reconstruction obtained by the proposed method (iSDR) at SNR
(e) 40 dB result after 4 iterations, (f) 5 dB result after 10 iterations and (g) -5 dB result after 14 iterations. The estimated eigenvalues
(100 runs) by the proposed iterative method at different noise levels, (h) 40 dB, (i) 5 dB and (j) -5 dB. In (k) and (I), we show the mean
over 100 runs of the estimated functional interactions between S1, S2, S3 and S4 for SNR equal to 5 and -5 dB respectively.

VI. CONCLUSION

We developed a source reconstruction framework con-
strained by a whole brain dynamical model based on dMRI
information. The framework iteratively solves the source
activation and MAR entries. In our study, the framework
could correct the false activation in low SNR level generated
by the two-stage approach and detect the correct functional
interactions between sources. Application to real datasets and
comparison of the solutions to the physiological literature is
essential to validate this framework.
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