On the Distinguishing Number of Cyclic Tournaments: Towards the Albertson-Collins Conjecture - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

On the Distinguishing Number of Cyclic Tournaments: Towards the Albertson-Collins Conjecture

Résumé

A distinguishing $r$-labeling of a digraph $G$ is a mapping $\lambda$ from the set of vertices of $G$ to the set of labels $\{1,\dots,r\}$ such that no nontrivial automorphism of $G$ preserves all the labels. The distinguishing number $D(G)$ of $G$ is then the smallest $r$ for which $G$ admits a distinguishing $r$-labeling. From a result of Gluck (David Gluck, Trivial set-stabilizers in finite permutation groups, {\em Can. J. Math.} 35(1) (1983), 59--67), it follows that $D(T)=2$ for every cyclic tournament~$T$ of (odd) order $2p+1\ge 3$. Let $V(T)=\{0,\dots,2p\}$ for every such tournament. Albertson and Collins conjectured in 1999 that the canonical 2-labeling $\lambda^*$ given by $\lambda^*(i)=1$ if and only if $i\le p$ is distinguishing. We prove that whenever one of the subtournaments of $T$ induced by vertices $\{0,\dots,p\}$ or $\{p+1,\dots,2p\}$ is rigid, $T$ satisfies Albertson-Collins Conjecture. Using this property, we prove that several classes of cyclic tournaments satisfy Albertson-Collins Conjecture. Moreover, we also prove that every Paley tournament satisfies Albertson-Collins Conjecture.
Fichier principal
Vignette du fichier
v2_Meslem Sopena - On the Distinguishing Number of Cyclic Tournaments.pdf (257.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01353772 , version 1 (13-08-2016)
hal-01353772 , version 2 (21-04-2017)
hal-01353772 , version 3 (17-08-2017)
hal-01353772 , version 4 (08-10-2018)

Identifiants

Citer

Kahina Meslem, Eric Sopena. On the Distinguishing Number of Cyclic Tournaments: Towards the Albertson-Collins Conjecture. 2016. ⟨hal-01353772v2⟩
309 Consultations
184 Téléchargements

Altmetric

Partager

More