Clustering technique for conceptual clusters
Résumé
Clustering aims to classify elements into groups called classes or clusters. Clustering is used in reverse-engineering to help to understand legacy software. It is also a tech-nic used in re-engineering to propose gatherings of software entities to engineers who can then accept them or not. This paper presents a Pharo implementation of an iterative and semi-automatic method for clustering. Our method proposes, to an end-user, clusters that are based on domain information and structural information. The method presented in this paper has been applied in an industrial project of architecture migration. We show that this method helps engineers to cluster software elements into domain concepts. The clustering gives a result of 56% of precision and 79% of recall after the automated part in a high level clustering. A deeper clustering gives a result of 51% of precision and 52% of recall.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...