ARMA Modelling for Sleep Disorders Diagnose
Résumé
Differences in EEG sleep spindles constitute a promising indicator of sleep disorders. In this paper Sleep Spindles are extracted from real EEG data using a triple (Short Time Fourier Transform-STFT; Wavelet Transform-WT; Wave Morphology for Spindle Detection-WMSD) algorithm. After the detection, an Autoregressive–moving-average (ARMA) model is applied to each Spindle and finally the ARMA’s coefficients’ mean is computed in order to find a model for each patient. Regarding only the position of real poles and zeros, it is possible to distinguish normal from Parasomnia REM subjects.
Domaines
Informatique [cs]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...