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Abstract. Differences in EEG sleep spindles constitute a promising indicator of 

sleep disorders. In this paper Sleep Spindles are extracted from real EEG data 

using a triple (Short Time Fourier Transform-STFT; Wavelet Transform-WT; 

Wave Morphology for Spindle Detection-WMSD) algorithm. After the 

detection, an Autoregressive–moving-average (ARMA) model is applied to 

each Spindle and finally the ARMA’s coefficients’ mean is computed in order 

to find a model for each patient. Regarding only the position of real poles and 

zeros, it is possible to distinguish normal from Parasomnia REM subjects. 
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1   Introduction 

Sleep spindles are particular EEG patterns which occur during the sleep cycle with 

center frequency in the band 11.5 to 15 Hz. They are used as one of the features to 

classify the sleep stages [1]. Sleep spindles are promising objective indicators in sleep 

disorders. In order to interpret then, their structure needs to be clarified or a suitable 

model needs to be found. The correct detection of human sleep spindles and posterior 

characterization can lead to early detection of changes in brain and prevent or, at 

least, mitigate the influence of certain diseases [2]. 

In [2] automated spindle characterization by using autoregressive moving 

average (ARMA) was proposed by the authors to distinguish between normal, elderly 

and dementia patients. In this work, ARMA model for sleep spindles is used to detect 

meaningful differences when applied to spindles from different types of people, in 

this case to distinguish normal from Parasomnia REM subjects.  

2   Relationship to Internet of Things 

As one of the main ideas of the Internet of Things (IoT) is that all objects and people 

in daily life will be equipped with radio tags and they could be identified and 

inventoried by computers, it will bring great advantages in the bio-signal processing 

fields. It will come a time where people are constantly monitored in their “biological 

values”. Signals like body heat, heart rate, ECG and EEG amongst others will be real-

time monitored in order to rapidly and efficiently detect certain deceases. 
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3   Sleep Spindles 

It is commonly referred in literature that sleep spindles are the most interesting 

hallmark of stage 2 sleep electroencephalograms (EEG) [1]. A sleep spindle is a burst 

of brain activity visible on an EEG and it consists of 11-15 Hz waves with duration 

between 0.5s and 2s in healthy adults, they are bilateral and synchronous in their 

appearance, with amplitude up to 30 µV (Fig. 1. Example of SS detection using WT. 

Fig. 2. Example of SS detection using WMSD.).  

The spindle is characterized by progressively increasing, then gradually 

decreasing amplitude, which gives the waveform its characteristic name. It  is  now 

reliable  that  sleep  spindles  are  originated  in  the  thalamus and  can  be  recorded  

as  potential  changes  at  the  cortical surface [3]. 

Sleep spindles were first described in human EEG by Loomis in 1935, but the first 

commonly accepted definition of sleep spindle was given by [4]: 

“The presence of a sleep spindle should not be defined unless it is of at least 

0.5sec duration, i.e., one should be able to count 6 or 7 distinct waves within the half-

second period.  Because the term “sleep spindle” has been widely used in sleep 

research, this term will be retained. The term should be used only to describe activity 

between 12 and 14 cps.” 

4   ARMA models and Sleep Spindle detection 

4.1   ARMA Model 

 

In signal processing, autoregressive moving average (ARMA) models are typically 

applied to correlated time series data. Given a time series, we can consider it as the 

output of an ARMA system driven by white noise. The ARMA model is a tool for 

understanding and, whenever necessary, predicting future values in time series. The 

model consists of two parts, an autoregressive (AR) part and a moving average (MA) 

part. The model is usually referred to as ARMA(p,q) where p is the order of the 

autoregressive part and q is the order of the moving average part . 

Compared with the pure MA or AR models, ARMA models more suitable for 

describing the characteristics of a given process with minimum number of parameters 

using both poles and zeros, rather than just poles or zeros [5].  

As referred, a stationary ARMA process of order (p,q) is considered as the output 

of a linear time-invariant(LTI) digital filter driven by white noise. The transfer 

function of the system is given by: 
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with a0=1. The process corresponding to this model satisfies the difference equation: 
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where w(n) is the input sequence, a zero-mean white noise and x(n) is the output 

sequence. The main task in the modeling can be formulated as: 

Given a segment of a time series, x(n), n=0,1,2 …, L-1, estimate the p+q+1 ARMA 

parameters. 

 

4.3 Sleep Spindle Detection 

 

In this paper a combination of three different approaches is used for the automatic 

detection of sleep spindles: Short Time Fourier Transform, Wavelet Transform and 

Wave Morphology for Spindle Detection.  

The individual detection algorithms are explained from section 4.3.1 trough 4.3.3. 

In order to improve the results, the three detectors are mixed together using the 

procedure presented in 4.3.4.  

The best performance obtained resulted in a sensitivity and specificity of 94% 

when compared to human expert scorers. The algorithms were previously 

implemented, tested and evaluated by the authors in manual human scored signals in 

[6]. 

 

4.3.1 Sleep Short Time Fourier Transform (STFT) 

The use of STFT is used to determine the sinusoidal frequency and phase content of 

local sections of a signal as it changes over time and it is commonly used in signal 

processing [7]. The STFT of a discrete signal is: 
 

STFT{x[n]} = X(m, ω) = ∑
n=-∞
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 (3) 

The magnitude squared of the STFT yields the spectrogram of the signal: 
 

spectrogram{x[n]} = |X(τ,ω)|2. 
 

 (4) 
The SS detection is based on the spectrogram. A segment is marked as SS when a 

peak (above a pre-specified threshold) with duration between 0.5s and 2s occurs in 

the SS frequency range.  

In the STFT SS detection used, the threshold value used corresponds to the 

cumulative value of peaks in the spectrogram 

 

4.3.2 Wavelet Transform (WT) 
 

In this method, the detection of sleep spindles employ the continuous wavelet 

transform of EEG signal x(t): 
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where Ѱ(t) is called the ‘mother wavelet’, the asterisk denotes complex conjugate, 

whereas  a and b are scaling parameters [8]. The corresponding normalized wavelet 

power is defined by: 

 w(a,b) = W2 (a,b)/σ2, (6) 

and σ  is the standard deviation of the EEG segment used. 

Complex Morlet WT is defined as 

 
Ѱ(x) = 

1

πfb
 e2πfcx ex2/fb dt, 

 

(7)  

where fc is the center frequency and fb the bandwidth frequency. In order to find SS 

using the WT, the normalized WT power was determined and when a peak (greater 

then a determined threshold) with a duration between 0.5s and 2s occurred a SS was 

marked. 

 
Fig. 1. Example of SS detection using WT. 

 

4.3.3 Wave Morphology for Spindle Detection (WMSD) 
 

The WMSD algorithm proposed in this paper is based on the definition of Sleep 

Spindle by Rechtschaffen and Kales [4] 

The WMSD algorithm was for the first time published by the authors in [6].The 

implemented algorithm consists of: 

a) Detection of peaks in the signal (maxima and minima), based on a defined 

threshold, thus, eliminating small peaks; 

b) Determination of extreme to extreme time distance and conversion to 

frequency: 

 
f = 

1

T
 

 

(8) 

c)  Verification if the determined frequencies lie in the SS range (11-15 Hz); 
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d) If there are more than 12 consecutive peaks (6 maxima and 6 minima) in the 

SS frequency band a spindle is marked.  

The whole process mimics the visual detection mechanism. 

 
Fig. 2. Example of SS detection using WMSD. 

 

4.3.4 Mixed Detection Using WT, STFT and WMSD 
 

 

Fig. 3. Sensitivity x Specificity curves. 
 

In this work, a mixed algorithm using WT, STFT and WMSD algorithms, was used. 

In this approach, we use a vector to characterize the signal (same length as the 

sampled signal).This vector defines each point as belonging to a SS or not. The mixed 

result is computed, i.e., a point is considered belonging to a SS if it is marked as SS in 

WT, STFT and WMSD algorithms. Finally, if there are not enough consecutive points 
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marked as belonging to a SS, in order to last at least 0.5 seconds, they are considered 

as non-spindle. The best performance obtained resulted in a sensitivity and specificity 

of 94% when compared to human expert scorers. In Fig. 3. Sensitivity x Specificity 

curves. are shown for the individual algorithms together with the combination of the 

3. 

5   Experimental Results 

This study makes use of a sample representative of human sleep, obtained from 23 

volunteers, males and females with ages between 35 and 87 years old. Briefly, all 

polysomnograms were obtained by a Nicolet EEG 1A97 18-channel polygraph with a 

sampling rate of 256Hz. From the group, 8 subjects were completely healthy and the 

remaining 15 had some kind of REM Parasomnia: REM sleep behavior disorder 

(RBD), Recurrent Isolated Sleep Paralysis or Catathrenia. The signals were 

unclassified and the whole night signal of C3-A2 channel was used. At this stage our 

objective was only to distinguish healthy from Parasomnia subjects. 

The detection methods were applied with a combination of threshold parameters 

for the STFT, WMSD and WT algorithm. In the STFT case, the threshold value used 

corresponds to the cumulative value of peaks in the spectrogram. In the WMSD 

algorithm, a point is considered a maximum peak if it has the maximal value, and was 

preceded (to the left) by a value lower than the threshold defined. The Normalized 

Wavelet Power amplitude is used as threshold in the WT case. 

After the algorithms were applied to the signals and SS identified, ARMA 

modelling was performed for all the SS from all subjects. After this, computation of 

the arithmetic means of the coefficients from the ARMA transfer functions was 

performed. This gave us a typical SS transfer function for each subject. 4 groups have 

then been created, comprising subjects with similar pole/zero distributions. Only the 

zero and real pole position have been taken into care. The characteristics of each 

group are as follows: 

• Group 1: pole on the left complex plane and zero on the right complex plane (see 

Fig. 4. Zeros and poles from Group 1.); 

• Group 2: pole on the right complex plane close to 1 and zero on the left complex 

plane (left from -0.1) (see Fig. 5. Zeros and poles from Group 2.); 

• Group 3: pole on the right complex plane close to 1 and zero near the origin 

(right from -0.1 and left from +0.1) (see Fig. 6. Zeros and poles from Group 3.); 

• Group 4: pole on the right complex plane close to 1 and zero on the right 

complex plane (right from +0.1) (see Fig. 7. Zeros and poles from Group 4.). 
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The subjects’ allocation to the groups resulted as follows: 

• Group 1: 3 subjects, all suffering from REM Parasomnia; 

• Group 2: 12 subjects, all suffering from REM Parasomnia; 

• Group 3: 3 healthy subjects; 

• Group 4: 5 healthy subjects. 

It is word notice that all the healthy subjects were classified as belonging to 

Groups 3 or 4 and all the Parasomnia REM patients were allocated in Groups 1 or 2. 

A further in depth analysis of the subjects’ deceases and the deceases grades should 

be taken into account to understand the existence of four groups instead of 2. This can 

also lead to the conclusion that for some reason there are significant differences 

between the healthy subjects. 

  
Fig. 4. Zeros and poles from Group 1. Fig. 5. Zeros and poles from Group 2. 

  
Fig. 6. Zeros and poles from Group 3. Fig. 7. Zeros and poles from Group 4. 
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6   Conclusions 

ARMA modeling seems a promising indicator for Sleep disorders. In this work 

subjects suffering from several Parasomnia disorders were automatically identified 

based only on the zeros and poles position of their Sleep Spindle model. The work to 

follow will be to distinguish pathologies from each other, that is, once it is known that 

a patient suffers from a sleep disorder, how to automatically diagnose its condition 

based on the Sleep Spindle model. 
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