MPSoCSim extension: An OVP Simulator for the Evaluation of Cluster-based Multicore and Many-core architectures
Résumé
In this paper, an extension of the OVP based MPSoC simulator MPSoCSim is presented. This latter is an extension of the OVP simulator with a SystemC Network-on-Chip (NoC) allowing the modeling and evaluation of NoC based Multiprocessor Systems-on-Chip (MPSoCs). In the proposed version, this extended simulator enables the modeling and evaluation of complex clustered MPSoCs and many-cores. The clusters are compound of several independent subgroups. Each subgroup includes an OVP processor connected by a local bus to its own local memory for code, stack and heap. The subgroups being independent, the attached OVP processor model can be different from the other subgroups (ARM, MicroBlaze, MIPS,...) allowing the simulation of heterogeneous platforms. Also, each processor executes its own code. Subgroups are connected to each other through a shared bus allowing all the subgroups in the cluster to access to a shared memory. Finally, clusters are connected through a SystemC NoC supporting mesh topology with wormhole switching and different routing algorithms. The NoC is scalable and the number of subgroups in each cluster is parameterizable. For a dynamic execution, the OVP processor models support different Operating Systems (OS). Also, some mechanisms are available in order to control the dynamic execution of applications on the platform. Different platforms and applications have been evaluated in terms of simulated execution time, simulation time on the host machine and number of simulated instructions.
Domaines
ElectroniqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|