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Abstract—In this paper, an extension of the OVP based MPSoC
simulator MPSoCSim is presented. This latter is an extension
of the OVP simulator with a SystemC Network-on-Chip (NoC)
allowing the modeling and evaluation of NoC based Multiproces-
sor Systems-on-Chip (MPSoCs). In the proposed version, this ex-
tended simulator enables the modeling and evaluation of complex
clustered MPSoCs and many-cores. The clusters are compound
of several independent subgroups. Each subgroup includes an
OVP processor connected by a local bus to its own local memory
for code, stack and heap. The subgroups being independent, the
attached OVP processor model can be different from the other
subgroups (ARM, MicroBlaze, MIPS,...) allowing the simulation
of heterogeneous platforms. Also, each processor executes its own
code. Subgroups are connected to each other through a shared
bus allowing all the subgroups in the cluster to access to a shared
memory. Finally, clusters are connected through a SystemC NoC
supporting mesh topology with wormhole switching and different
routing algorithms. The NoC is scalable and the number of
subgroups in each cluster is parameterizable. For a dynamic
execution, the OVP processor models support different Operating
Systems (OS). Also, some mechanisms are available in order to
control the dynamic execution of applications on the platform.
Different platforms and applications have been evaluated in terms
of simulated execution time, simulation time on the host machine
and number of simulated instructions.

I. INTRODUCTION

Networks-on-Chip (NoC) have recently emerged as a
promising solution for on-chip scalable communication in
highly integrated multi and many-core systems. Such an
approach is very attractive in order to offer users with high
performance. The design space of these sophisticated systems
is very large. A simulator is thus mandatory for an early
evaluation of such complex systems.

The OVP technology allows the connection between the
OVP simulator and some platforms prototyped in SystemC [9].
MPSoCSim is an OVP based instruction accurate simulator for
MPSoCs [1]. It extends the OVP simulator with a SystemC
NoC in which each router is connected to a node. Each node
is compound of an OVP processor model, a local memory
for heap and stack and a local RAM. This latter is used to
store the code but also to communicate with distant processors.

MPSoCSim allows the modeling of heterogeneous MPSoCs
with distributed memory. The NoC is scalable and currently
supports 2-D mesh topology with wormhole switching and
different routing algorithms (XY, minimal West-First and
adaptive West-First algorithms). Finally, MPSoCSim supports
traffic generators additionaly to OVP processor models in
order to perform NoC design exploration. MPSoCSim has
been validated through the comparison with an HW imple-
mentation [1].

The main contribution of this paper is the extension of
MPSoCSim in order to model more complex multi and many-
core systems. Thus it allows the modeling and validation
of clustered NoC based platforms. Each cluster encompasses
several independent subgroups and a RAM shared between the
subgroups. Each subgroup is compound of an OVP processor
model directly connected to its local memory. The processors
in the subgroups can be heterogeneous (ARM, MicroBlaze,
MIPS,...). The clusters are connected to each other through a
SystemC NoC. The number of subgroups is parameterizable.

The remainder of this paper is organized as follows. Section
II presents the related work on NoC based multicore simu-
lators. In Section III, the structure of the MPSoC simulator
MPSoCSim and its comparison to the HW implementation
are presented. In Section IV the extension of MPSoCSim
is explained, as well as some possible mechanisms in order
to simulate a dynamic execution on the platform. Section V
shows an evaluation of the extended simulator. Finally, Section
VI draws some conclusions and presents future work.

II. RELATED WORK

Several simulators for NoC based MPSoCs are already
available, each one addressing some specific issues. In this
section, some of the existing simulators are described and
compared with the extended version of MPSoCSim presented
in this paper.

Full-system simulators, such as GEM5 [2] (full-system
mode) and SimFlex [3] run applications and system software



(mostly OSes) modeling both micro architecture details and
OSes. GEM5 for instance, chooses a complex execute-in-
execute approach that integrates functional and performance
simulations to model micro architecture details with a very
high level of accuracy. However, this kind of simulator is very
slow and is not dedicated to simulate many-core systems. In
contrast, there are also available application-level simulators,
such as SimpleScalar [4] or GEM5 [2] (system-call emulation
mode). In contrast with [3] and [4], MPSoCSim benefits
from OVP features and thus supports both, application-level
simulations as well as different OSes such as Linux or FreeR-
TOS. Moreover, in contrast with MPSoCSim, GEM5 does not
currently support NoC communication infrastructure. Finally,
compared with GEM5, which is cycle accurate, MPSoCSim is
instruction accurate with allows much shorter simulation time
while being sufficiently accurate [1].

Several existing simulators for multi and many-core systems
have been designed and focus on one subsystem of the multi
or many-core system. Some of the cycle accurate simulators
exploring the NoC design space are highlighted in the fol-
lowing. These simulators enable the configuration of several
NoC parameters. Nirgam [5] is a cycle accurate SystemC
simulator supporting several NoC topologies and enabling the
configuration of the clock frequency, the buffer depth, flit
size and virtual channels. In Noxim [6], a SystemC NoC
simulator, parameters such as the network size, buffer size,
routing algorithm, packet size distribution and selection strat-
egy are customizable to evaluate the communication system.
The evaluation is enabled by traffic generators. In addition,
these generators support different traffic patterns. Booksim
2.0 [7] is another cycle-accurate NoC simulator. A traffic
manager generates packets that are sent through the NoC.
As all the aforementioned simulators, Booksim 2.0 has also
parameterizable components. The topology, routing algorithm,
flow control and additionally the router micro architecture
are configurable. This enables the evaluation of different
performance metrics.

All the aforementioned simulators analyze the NoC with
traffic patterns generated by traffic generators. This eval-
uation is essential since it allows the study of the NoC
properties. Compared to these previous works, MPSoCSim
is also convenient for NoC simulation and evaluation since
it currently supports a parameterizable mesh NoC. Moreover,
MPSoCSim supports traffic generators in order to evaluate the
NoC properties. However, in contrast with the work presented
above, MPSoCSim also supports OVP processor models. Each
processor is programmable and run its own code. This feature
enables the HW/SW co-design of MPSoCs.

Similar to MPSoCSim, the work presented in [8] is also
based on OVPSim. However, Rosa et al. focus on power
estimations including an energy model in the OVPSim sim-
ulator. The simulation results are compared with a gate-level
implementation of the simulated platform. On the contraty,
power estimation is not the purpose of MPSoCSim.

Compared to previous efforts, MPSoCSim in its extended
version is a flexible NoC based multi and many-core simulator.
It enables the evaluation of the NoC properties since it supports
traffic generators as well as configurable NoC parameters.
Finally, MPSoCSim benefits from the OVP processor models
features and thus supports OSes such as Linux and FreeRTOS
models.

III. MPSOCSIM IN ITS ORIGINAL VERSION

The OVP technology allows the connection of the simulator
to existing SystemC platforms [9]. Within the SystemC envi-
ronment, the OVP simulator executes open source processors.
An OVP model is provided with a TLM2.0 interface in
the form of a C++ header file [10]. To use OVP models,
SystemC instantiates one tlmPlatform object. This object keeps
the quantum period which sets how long each processor
model instance waits before running again. This quantum is
adjustable.

A. NoC simulator

MPSoCSim proposes an environment for the simulation of
distributed multicore systems, based on a NoC [1]. Figure 1
shows an overall overview of the simulator. It relies on a NoC,
modeled in SystemC, where each router is connected to a
SystemC TLM Network Interface (NI) connected to a local
group called node.

Each node is compound of an OVP processor model, a local
memory (for the stack and heap) and a local RAM. Moreover,
a SystemC timer has been attached to each node in order to
provide local execution time results.

The local RAM is used to store the code but also to
communicate with distant processors. In fact an API has been
developed in order to send packets through the NoC. These
packets are stored on the local RAM of the targeted node at
an address offset chosen by the sender. Each processor can
thus read into the local RAM within its own node and write
to any other distant RAM.

The NoC currently supports 2D-Mesh topology, a com-
munication through packets wormhole and several routing
algorithms. The routers provide 5 connectors (Fig. 2(a)). Each
connector consists of one target and one initiator sockets to
enable TLM data transmission. A local router’s port connects
a node to the NoC through the NI.

B. HW implementation

In [1], MPSoCSim has been evaluated and compared to
the HW implementation on a Xilinx Zynq device [11] which
provides an ARM processor besides an FPGA. The simulated
system which has been implemented is shown in Fig. 2(b).
The FPGA contains a NoC and 3 MicroBlazes. The proces-
sors are connected by RAR-NoC [12]. The ARM processor
communicates via the high performance port to the network.
Only one core of the ARM processor is used. The MicroBlaze
are linked via the FSL interface to the NoC.



Fig. 1. MPSoCSim simulator

(a) Router structure (b) 2D-Mesh NoC

Fig. 2. Router structure and 2D-Mesh NoC [1]

Parameters Chosen value
Quantum period 10us
ARM Frequency 667MHz

MicroBlaze (B) Frequency 100MHz
Nominal MIPS 100

Real flit time (ARM) 850ns
Real flit time (B) 40ns

Clock delay routing 0
Clock delay pass through 1

Network frequency 100MHz
Network size 2×2 clusters

TABLE I
SYSTEM PARAMETERS USED FOR EVALUATIONS

C. MPSoCSim evaluation

Table I sums up the system parameters used to compare the
simulator with the HW implementation.

For the comparison with the HW platform, a tiled matrix
multiplication has been used. The ARM creates the matrices to
be multiplied and sends the necessary rows and columns to the
MicroBlazes by dividing the matrices into equal parts. Each
MicroBlaze does the corresponding computation and sends
the results back to the ARM which collects all the results.
Figure 3 shows the comparison between the simulator and
the HW implementation for the multiplication of 4×4, 8×8
and 16×16 matrices. Results show a deviation of 17% for a
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Fig. 3. Comparison between MPSoCSim and the HW implementation [1]

4×4 matrix. This deviation decreases for higher matrices sizes
(down to 2.5% for 16×16 matrices multiplication). The results
show an accurate simulation. The extension of MPSoCSim
presented in this paper relies on this validation of MPSoCSim
through the comparison with the real HW implementation.

IV. MPSOCSIM EXTENSION

In its first version, MPSoCSim was able to simulate simple
multiprocessor architectures, with one single processor per
node with distributed memory. It has been extended, in order
to allow the modeling of more complex clustered multi and
many-core systems supporting distributed memory between
clusters and shared memory within a cluster.

A. Clustering the architecture

The simulator has been extended at the node level in order
to form a more complex cluster. Each cluster can encompass
up to 4 subgroups and shared resources between subgroups
such as a shared memory and a NI to connect the cluster to
the NoC. Figure 4 shows the structure of each cluster.

Each subgroup is compound of one processor directly
connected as a master to its local memory through a local
bus (TLM decoder). The local memory stores heap, stack and
the processor code. This choice is made in order to improve
performance and avoid congestion on the shared bus. Indeed,
this choice allows better performance since each processor
locally access its code by its local bus instead of accessing
to the shared RAM. In this way, potential congestion on the
shared bus is avoided. Finally as subgroups are independent,
processors can not access to other processor’s local mem-
ory, thus unauthorized accesses to other processor’s code is
avoided.

A processor can read and write to its own local memory
and to the shared RAM within its cluster. The shared RAM
is used to exchange data between processors within the same



Fig. 4. Extension of the MPSoCSim simulator

cluster as well as with distant clusters by message passing
through the NoC. Moreover, each subgroup is independent
and processor models can be different in each subgroup (ARM,
MicroBlaze, MIPS,...) allowing the modeling of heterogeneous
architectures.

A shared bus (TLM decoder) connects the shared resources
(shared RAM, NI, peripherals,...) to the NoC through the
corresponding router. Subgroups are connected as initiators
to the shared bus through a bridge, thus, no additional arbiter
is needed.

The number of subgroups in each cluster as well as the
number of clusters are parameterizable. This approach allows
a flexible modeling and evaluation of clustered heterogeneous
multi and many-core systems where the memory is distributed
between clusters and cluster resources (e.g. shared RAM,
NI, peripherals,...) are shared between processors within the
cluster. This solution is flexible and scalable since each cluster
can encompass a different number of independent and hetero-
geneous processors, each one executing its own application
code.

B. Dynamic execution

The simulator benefits from the OVP processor models
which support different OSes such as Linux or FreeRTOS.
However, some other OVP and SystemC features can be used
in order to simulate a dynamic scheduling of applications.
Indeed, the SystemC environment enables to run the simulator
for a given period of time. This feature enables to run, stop
and resume the execution. Moreover the OVP environment
allows the simulator to reset any processor through its reset
pin. In this way, the processor’s program counter is reseted
and the application on this processor can be restarted from
the beginning or another application code can be executed.
It is worth noting that during the time taken to reset a single
processor, the other processors are still running independently.
These 2 mechanisms can be used together in order to control

the dynamic execution on the platform. In this study, one
cluster encompasses an ARM processor acting as a master of
the platform. The other clusters are compound of 4 processors
sharing local resources. The master of the platform run dif-
ferent deployment strategies (scheduling, mapping, memory
allocation) in order to dynamically control the execution of
several applications running in parallel. The extended version
of MPSoCSim allows, in addition to the evaluation of the NoC,
the evaluation of different dynamic deployment strategies on
a multi or many-core architecture without the implementation
cost of modifying an OS.

V. EVALUATION

In this section, the evaluation of the extended simulator is
presented.

A. Experimental protocol

The presented extension of MPSoCSim relies on the valida-
tion of MPSoCSim in its first version [1]. For the evaluation of
the MPSoCSim extension, we use the same system parameters
as for the validation of MPSoCSim (Table I).

The extension of MPSoCSim has been validated and eval-
uated through synthetic applications such as a matrix multi-
plication of several sizes on different architectures. For these
experimentations, one cluster contains a single ARM and the
other clusters encompass 4 subgroups (meaning 4 MicroBlazes
in each cluster). Matrix multiplications of several matrices
sizes have been evaluated on a 2×2 cluster (12 MicroBlazes
and 1 ARM) and 4×4 cluster (60 MicroBlazes and 1 ARM)
architectures.

As in Section III the ARM generates the matrices, divides
the computation into equal parts, sends the corresponding rows
to the MicroBlazes and collects the results. Each MicroBlaze
executes its own code, does the corresponding computation
and sends back to the ARM the generated results.

In Section V-B, the results for both architectures, for several
sizes of matrix multiplications, in terms of elapsed time,
simulated execution time and number of instructions simulated
are discussed. The elapsed time is the host machine time
necessary to simulate the execution scenario on the OVP
environment. The simulated execution time is the time needed
by the simulated system to complete the execution of the
simulated scenario. The simulated execution time is also
computed for each processor. Results in terms of number of
instructions simulated in total as well as per processor are also
available. Finally, results are compared with the execution on
a homogeneous architecture.

B. Experimental results

Figure 5 shows the evaluation on the elapsed time in
milliseconds necessary on the host machine to simulate the ex-
ecution of several sizes of matrix multiplications on 2 different
platforms; a 2×2 cluster and a 4×4 cluster architectures (12
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Fig. 5. Elapsed time (in msec.) on the host machine for different sizes
of matrix multiplications on a 2×2 and 4×4 cluster architectures (12
MicroBlazes and 1 ARM, and 60 MicroBlazes and 1 ARM respectively)

MicroBlazes and 1 ARM, and 60 MicroBlazes and 1 ARM,
respectively). Notice that the 4×4 matrix multiplication has
not been executed on the 4×4 architecture (60 MicroBlazes
and 1 ARM). This is because each MicroBlaze may execute
at least one computation. The results presented in this paper
have been generated on an Intel Core 2 Quad Q9400, 2.66GHz
frequency PC with 3.87 GB RAM (usable). The elapsed time
on the host machine increases with the size of the simulated
platform, however it can be noticed that the simulator enables
very fast simulation time on the host machine even for the
most complex architecture (around 1.5 seconds for a 60
MicroBlazes and 1 ARM architecture).

The total simulated execution time on the simulated system
(Fig. 6), for several sizes of matrix multiplications on the 2
different platforms described above, has also been evaluated.
These results are useful in order to choose the best architecture
size for a given execution scenario by comparing the trade off
of having more computational resources and the communica-
tion complexity overhead induced for larger and more complex
platform. In this case, for instance, a naive remark is that,
according to results in Fig. 6, for small matrix multiplications
(below 32×32 matrix multiplication), it is not worth having a
larger platform since the computation is negligible compared
to the communication cost. In fact in larger platforms, the
packets, always sent by the ARM, need to cross a greater
number of routers to get to their destination. Furthermore,
the MicroBlazes are polling the memory until the packets
arrive. On the other hand, for greater computation, it is worth
executing the application on larger platforms. However, if we
look deeper into results, it can be noticed that executing a
16×16 matrix multiplication on a 4×4 cluster architecture
provides a gain of 22% of the execution time compared to the
execution on a 2×2 cluster architecture. However, to obtain
this gain, 60 MicroBlazes are needed instead of only 12. Thus,
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Fig. 6. Total simulated execution time (in sec.) for different sizes of matrix
multiplications on a 2×2 and 4×4 cluster architectures (12 MicroBlazes and
1 ARM, and 60 MicroBlazes and 1 ARM respectively)

the results obtained with this simulator can be used in order
to choose the best size of the platform for a given execution
scenario.

Finally, results in terms of simulated instructions for a given
execution scenario, are also available in Fig. 7. These results
allow the evaluation of the communication cost for different
platforms for a given execution scenario. In fact, it can be
seen that the communication overhead for a larger platform
decreases when the matrix multiplication size increases for
the same computation load (down to 22% more instructions
for a 64×64 matrix multiplication on a 4×4 cluster compared
to the execution on a 2×2 cluster architectures). The simulated
instructions results are also provided per processor (Fig. 8) al-
lowing the evaluation and validation of an execution scenario.
For better understanding, only the results of a 2×2 cluster
architecture (12 MicroBlazes and 1 ARM) are presented. It
can be noticed for example that the ARM executes a greater
number of instructions than the MicroBlazes in every matrix
multiplication scenario. This is explained by the fact that the
ARM is responsible for creating and splitting the computation
between the number of MicroBlazes. The ARM sends as
well the necessary rows to each MicroBlaze. Moreover, it
can be seen from the results that any MicroBlaze is blocked
waiting for data for instance which means that there is no
congestion on the network. Finally, in the evaluated scenario,
the processors within the cluster 3 execute more instructions
than the other ones. This is because the cluster 3 is the furthest
cluster from the ARM, thus, they wait longer for the data
sent by the ARM (memory polling instructions). The provided
approach could also be used in order to evaluate load balancing
algorithms on such systems. It will be studied on future work.

MPSoCSim allowing the evaluation on homogeneous ar-
chitectures as well, the same experimentations have been
evaluated on a 2×2 cluster homogeneous architecture encom-
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Fig. 8. Simulated instructions per processor for different sizes of matrix
multiplications on a 2×2 architecture (12 MicroBlazes and 1 ARM)

passing ARM processors only. Table II compares the results
on both architecures. As the frequency of the ARM processor
is higher that the Microblaze one, the exectution time is lower.

VI. CONCLUSION

In this paper, an extension of the OVP-based simulator
MPSoCSim is presented. MPSoCSim has been evaluated and
validated through the comparison with the HW implementa-
tion. In its extended version, the simulator allows the modeling
and evaluation of clustered NoC based multi and many-core
architectures with distributed memory between clusters and
shared memory within a cluster. Each cluster comprises up
to 4 processors that might be heterogeneous (ARM, MicroB-
laze, MIPS,...). The simulator is flexible and scalable and
can encompass different number of clusters, each comprising

Matrix multiplication size Het. architecture Hom. architecture
4×4 Mat Mult 0.04 0.001
8×8 Mat Mult 0.111 0.0033

16×16 Mat Mult 0.56 0.138
32×32 Mat Mult 3.7 0.6093
64×64 Mat Mult 27 2.9

TABLE II
EXECUTION TIME (IN SEC.) ON A HETEROGENEOUS AND A

HOMOGENEOUS ARCHITECURE

different number of processors that might be heterogeneous.
The simulator presents some features that can also be used
in order to execute a dynamic scenario. Finally, results in
terms of elapsed time in order to simulate such architectures,
simulated execution time on the simulated system as well
as the number of simulated instructions per processor are
available. The simulation results on different architectures
encompassing up to 60 MicroBlazes and 1 ARM, show that
the simulator enables the flexible simulation of a great number
of instructions in a very short time. Mechanisms enabling
the control of the platform in a dynamic scenario, as well
as features in order to load applications dynamically, will be
further explored in future work.
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