Long time existence for the semi-linear Klein-Gordon equation on a compact boundaryless Riemannian manifold - Archive ouverte HAL
Article Dans Une Revue Communications in Partial Differential Equations Année : 2017

Long time existence for the semi-linear Klein-Gordon equation on a compact boundaryless Riemannian manifold

Rafik Imekraz
  • Fonction : Auteur
  • PersonId : 954076

Résumé

We investigate the long time existence of small and smooth solutions for the semi-linear Klein-Gordon equation on a compact boundaryless Riemannian manifold. Without any spectral or geometric assumption, our first result improves the lifespan obtained by the local theory. The previous result is proved under a generic condition of the mass. As a byproduct of the method, we examine the particular case where the manifold is a multidimensional torus and we give explicit examples of algebraic masses for which we can improve the local existence time. The analytic part of the proof relies on multilinear estimates of eigenfunctions and estimates of small divisors proved by Delort and Szeftel. The algebraic part of the proof relies on a multilinear version of the Roth theorem proved by Schmidt.
Fichier principal
Vignette du fichier
Delort-Imekraz-KG-manifold.pdf (527.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01346519 , version 1 (19-07-2016)

Identifiants

  • HAL Id : hal-01346519 , version 1

Citer

Jean-Marc Delort, Rafik Imekraz. Long time existence for the semi-linear Klein-Gordon equation on a compact boundaryless Riemannian manifold. Communications in Partial Differential Equations, 2017, 42 (3), pp.388-416. ⟨hal-01346519⟩
148 Consultations
156 Téléchargements

Partager

More