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LONG TIME EXISTENCE FOR THE SEMI-LINEAR KLEIN-GORDON

EQUATION ON A COMPACT BOUNDARYLESS RIEMANNIAN MANIFOLD

by

Jean-Marc Delort & Rafik Imekraz

Abstract. — We investigate the long time existence of small and smooth solutions for the semi-linear Klein-

Gordon equation on a compact boundaryless Riemannian manifold. Without any spectral or geometric assump-

tion, our first result improves the lifespan obtained by the local theory. The previous result is proved under a
generic condition of the mass. As a byproduct of the method, we examine the particular case where the manifold

is a multidimensional torus and we give explicit examples of algebraic masses for which we can improve the local

existence time. The analytic part of the proof relies on multilinear estimates of eigenfunctions and estimates of
small divisors proved by Delort and Szeftel. The algebraic part of the proof relies on a multilinear version of the

Roth theorem proved by Schmidt.
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1. Introduction

Let us consider a smooth compact boundaryless Riemannian manifold X (with d := dimX ≥ 2) and
denote by ∆ its negative Laplace-Beltrami operator. We investigate the dynamics of the solutions of the
Klein-Gordon equation

(1) (∂2
t −∆ +m2)w = wn+1, x ∈ X, t ∈ R.

In the previous equation, n is a positive integer and m is a positive real number (usually called the
mass). In this work, we are concerned with very smooth solutions (namely which belong to Hs(X) with
s � 1). A fix point argument easily leads to the following result : if ε ∈ (0, 1) is small enough and if
(w(0, ·), ẇ(0, ·)) ∈ Hs(X)×Hs−1(X) is an initial datum such that ‖w(0, ·)‖Hs(X) + ‖ẇ(0, ·)‖Hs−1(X) is less

than ε, then the Klein-Gordon equation (1) admits a unique solution which is bounded by Cε on a lifespan
of order ε−n. Our purpose is to extend the lifespan given by the local theory and to keep the uniform control
of the solution by Cε. For simplicity, we call ε−n the local existence time.

J.-M. Delort was partly supported by the ANR ANAÉ.
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Such a question was studied in several articles and may be summarized as follows : is there a constant
A > 1 such that we can improve the local existence time to ε−An ?

One can organize the known results in two categories depending on the asymptotic behavior of the
spectrum of

√
−∆. The first case that had been understood is the one-dimensional torus T (see [Bou96,

Bam03, BG06]). Provided that m > 0 is chosen outside a zero Lebesgue measure subset of (0,+∞), the
Klein-Gordon equation admits almost global solutions on T : the local existence time can be improved to
CA,nε

−An for any real number A > 1. Such a result has been extended to multidimensional spheres Sd (or
more generally Zoll manifolds) by Bambusi, Delort, Grébert, Szeftel (see [BDGS07]). In these cases, an
important tool in the proofs is the separation of the spectrum of

√
−∆ : roughly speaking, two different

eigenvalues λ 6= λ′ of
√
−∆ fulfill a uniform estimate |λ − λ′| & 1 (for Zoll manifolds, a weaker property

holds). For the sequel of our work, it is worth pointing out that the previous paper [BDGS07] makes use of
universal multilinear estimates of eigenfunctions (proved by Delort-Szeftel in [DS06]) that hold true without
any geometric assumption (although merely used for Zoll manifolds).

The multidimensional torus Td does not fulfill the above-mentioned property of separation. For instance,
the spectrum of

√
−∆ on Td, with d ≥ 4, is nothing else than the set {

√
k, k ∈ N}. Two different and positive

eigenvalues λ 6= λ′ of
√
−∆ consequently satisfy the inequality |λ − λ′| & (λ + λ′)−1. However, the first

author showed in [Del09] that the local existence time ε−n can be improved to ε−An with A = 1 + 2
d (up

to a multiplicative logarithmic term). The previous result has been extended by Fang-Zhang in [FZ10] and
Zhang also applied this new method in [Zha10] to a Klein-Gordon equation posed on Rd (with a quadratic
potential which allows for a pure point spectrum). The second author remarked in [Ime15] that the paper
[Zha10] has a counterpart on any compact boundaryless Riemannian manifold for which all eigenvalues of
∆ belong to Z (for instance a finite product of spheres or Lie groups).

All the previous works use in an essential way a property of separation and suggest that the more separated
the spectrum of

√
−∆ is, the better the improvement of the local existence time can be. Moreover, almost

all results are obtained for almost every mass m > 0 (and such masses are thus not explicit). The only
exceptions we know are the Klein-Gordon equation with a quadratic nonlinearity, i.e. n = 1, (see [DS04,
Theorem 2.1] and [Del98] on tori or [Zha16] on Rd with the harmonic oscillator). The purpose of our article
is to study in a unified approach the following two questions :

i) Can we improve the local existence time on any compact boundaryless Riemannian manifold ? A
positive answer had been predicted in [Del09, page 165] if n is odd or if any two eigenvalues λ 6= λ′

of
√
−∆ fulfill an inequality of the form |λ − λ′| & |λ + λ′|−β for some β > 0. We give below an

affirmative answer without any assumption of parity on n and without separating all eigenvalues. Quite
surprisingly, the main idea is that a weaker property of separation holds true whatever the manifold is.
More precisely, if one denotes by (µj)j∈N the increasing sequence of all eigenvalues (without counting

multiplicities) of
√
−∆, then Proposition 4 claims that there are a constant C(X) > 0 and a subsequence

(µjk)k∈N such that the following holds as k tends to +∞ :

(2) µjk = C(X)k +O(1) and µ1+jk − µjk &
1

µd−1
jk

.

This very weak property of separation allows to consider packets of eigenvalues as done in [DS06,
BDGS07] for Zoll manifolds.

ii) For X = Td with the usual metric and n > 1, can we give examples of explicit masses m > 0 for which
we can improve the local existence time ? We give a very simple answer : one may choose any positive
real algebraic number m whose degree is larger than 2n+1, for instance m = p

√
3 is convenient for any

integer p > 2n+1.

The point to emphasize in our first result is that it excludes a blow-up of small solutions, whatever the
geometry of X is, in a slightly longer time than the one given by the local theory.

Theorem 1. — There exists a zero Lebesgue measure subset En,X ⊂ (0,+∞) such that the following holds
true for any m ∈ (0,+∞)\En,X . There are two positive numbers A > 1 and s0 > 0 (which only depend on
(m,X, n)) such that for any s > s0, for any couple of real-valued functions (w0, w1) ∈ Hs+1(X) × Hs(X)
with ‖w0‖Hs+1(X) + ‖w1‖Hs(X) = 1, there are C > 0 and K > 0 such that if ε > 0 is small enough then the
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Klein-Gordon equation (1) admits a unique solution

w ∈ C0((−Cε−An,+Cε−An), Hs+1(X)) ∩ C1((−Cε−An,+Cε−An), Hs(X)),

with initial data (w(0), ẇ(0)) = (εw0, εw1). Furthermore one has the uniform bound

∀t ∈ (−Cε−An,+Cε−An) ‖w(t)‖Hs+1(X) + ‖ẇ(t)‖Hs(X) ≤ Kε.

We prove Theorem 1 with a normal form procedure which only relies on multilinear estimates of eigenfunc-
tions and estimates of small divisors both obtained by Delort-Szeftel. In this dynamical context, the small
divisors are ±1-linear combinations of the eigenvalues of

√
−∆ +m2. Let us now recall the Delort-Szeftel

estimates if n is odd : for almost every m > 0, there are N0 > 0 and C(m,n,N0, d) > 0 such that for all
(k1, . . . , kn+2) ∈ Nn+2 and (ω1, . . . , ωn) ∈ {−1,+1}n+2 one has the lower bound

(3)

∣∣∣∣∣∣
n+2∑
j=1

ωj

√
µ2
kj

+m2

∣∣∣∣∣∣ ≥ C(m,n,N0, d)

(1 + max(µk1 , . . . , µkn+2))N0
.

The exponent A > 1 in Theorem 1 is directly linked to the exponent N0 (see the formula (37)) and is
therefore ineffective as it comes, among other arguments, from the  Lojasiewicz inequality (see [DS04, Part
5]). By contrast, better versions of (3) are used in the papers [Del09, FZ10, Zha10] thanks to an adequate
separation of all eigenvalues. This is why explicit constants A > 1 are obtained in the previous results. The
most favorable case is that in which one can bound the left-hand side of (3) from below by a negative power
of the third largest frequencies among µk1 , . . . , µkn+2

(for instance for spheres, see [BDGS07]).
Let us say a word on the difficulty if n is even. The left-hand side of (3) may become very small due to

simultaneous compensations and it seems hopeless to consider separately each eigenvalue. Using (2) allows
to overcome such an issue by considering separated packets of eigenvalues. The price to pay is to solve a
multidimensional homological equation (see Proposition 10) and unfortunately have a small loss of a power
of the largest frequency.

Let us now state our result about explicit masses on rational tori Td and more generally on manifolds
whose eigenvalues are integers (e.g. finite product of spheres). As far as we know, the following result is
the first one that provides explicit examples of masses m > 0 for a nonlinearity which is at least cubic (the
quadratic case is done in [DS04, Del98] for every m > 0 and in [Zha16] for m ∈ 2N in odd dimensions
with a quadratic potential).

Theorem 2. — Assume that all the eigenvalues of ∆ are integers and that m is a positive real algebraic
number of degree deg(m) > 2n+1. Consider moreover a real number A satisfying

1 < A < 1 +
2

d− 1 + 22n+2
.

Then there exists s0 > 0 (which only depends on (n, d,A)) such that the following holds. For any s > s0,
for any couple of real-valued functions (w0, w1) ∈ Hs+1(X) × Hs(X) with ‖w0‖Hs+1(X) + ‖w1‖Hs(X) = 1,

there are C > 0 and K > 0 such that if ε > 0 is small enough then the Klein-Gordon equation (1) admits a
unique solution

w ∈ C0((−Cε−An,+Cε−An), Hs+1(X)) ∩ C1((−Cε−An,+Cε−An), Hs(X)),

with initial data (w(0), ẇ(0)) = (εw0, εw1). Furthermore one has the uniform bound

∀t ∈ (−Cε−An,+Cε−An) ‖w(t)‖Hs+1(X) + ‖ẇ(t)‖Hs(X) ≤ Kε.

Note that the condition on A in Theorem 2 does not depend on m whereas it does in Theorem 1. To
explain the algebraic assumption on m in the statement of Theorem 2, it is worthwhile to recall a few
results in the theory of Diophantine approximations. The following result is very well-known and has a very
elementary proof : almost every real number α, in the sense of Lebesgue, satisfies the following

(4) ∀δ > 0 ∃C(α, δ) > 0 ∀p
q
∈ Q

∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α, δ)

|q|2+δ
.
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One of the deepest theorems in the theory of Diophantine approximations states that the previous also
holds true for any irrational algebraic number α (this is the Roth theorem, see [Rot55] or [Bug04, Theorem
2.1]). One can reformulate this result as follows : for any real algebraic number α

(5) ∀p
q
∈ Q

∣∣∣∣α− p

q

∣∣∣∣ 6= 0 ⇒ ∀δ > 0 ∃C(α, δ) > 0 ∀p
q
∈ Q

∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α, δ)

|q|2+δ
.

It turns out that (4) has been extended by Sprindžuk (thus proving a conjecture made by Mahler, see
[Spr69]) : for almost every α ∈ R and every ` ∈ N?, we have

(6) ∀δ > 0 ∀(q0, . . . , q`) ∈ Z`+1\{0} |q0 + q1α+ · · ·+ q`α
`| ≥ C(α, `, δ)

max(|q0|, . . . , |q`|)`+δ
.

Again, one has an algebraic counterpart : a consequence of a paper by Schmidt [Sch70] implies that (6) still
holds true if α is a real algebraic number that satisfies deg(α) > `.

Let us go back to the Delort-Szeftel estimates (3) on the torus Td, so the eigenvalues of −∆ are nonnegative
integers. The idea is simple to explain. Let us denote by D` the set of the real number α satisfying (6). To
avoid a discussion about resonant terms in this introduction, for any odd n we denote by Mn the set of the
real numbers µ > 0 for which there are N0 > 0 and C(µ, n,N0) > 0 such that

∀(k1, . . . , kn+2) ∈ Nn+2 ∀(ω1, . . . , ωn) ∈ {±1}n+2

∣∣∣∣∣∣
n+2∑
j=1

ωj

√
µ2
kj

+ µ

∣∣∣∣∣∣ ≥ C(µ, n,N0)

(1 + max(µk1 , . . . , µkn+2
))N0

.

In the specific case where the inclusion Sp(−∆) ⊂ N holds true, the proof of Proposition 24 will give us the
following

D2n ⊂Mn ⊂ R.
The Sprindžuk theorem implies that D2n has full measure and so has Mn. In other words, we get an
alternative proof of a very particular case of the Delort-Szeftel estimates. We get a new result by using the
Schmidt theorem : any real algebraic number µ satisfying deg(µ) > 2n belongs to D2n and so to Mn. The
natural relation µ = m2 finally explains the assumption deg(m) > 2n+1 of Theorem 2.

Analytic results Algebraic results

Almost every α ∈ R belongs to D1
Every real irrational algebraic number

belongs to D1 (Roth)

For every ` ∈ N?, almost every α ∈ R
belongs to D` (Sprindžuk)

For every ` ∈ N?, every real algebraic number
of degree > ` belongs to D` (Schmidt)

Almost every µ > 0
belongs to Mn (Delort-Szeftel)

Every real algebraic number of
degree > 2n belongs to Mn (our result)

Section 2 contains the proof of the weak property of separation (2) and the statements (analytic and
algebraic) of the Delort-Szeftel estimates. Section 3 explains the general strategy of normal form (which
fails in our issue). In Section 4, we give the proof of the loss of frequencies due to the multidimensional
homological equation. In the next sections 5, 6 and 7, we explain the strategy of partial normal form. Section
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8 is devoted to the Schmidt and Sprindžuk results about simultaneous Diophantine approximations. Section
9 contains the proof of a general result that implies, if n is odd, the inclusion D2n ⊂Mn.

2. Eigenvalues, mass and small divisors

The spectrum of the operator
√
−∆ is pure point and we denote by (λj)j≥0 the nondecreasing sequence

of its eigenvalues (with multiplicities). The Weyl formula with remainder (see [Hör68] or [SV97, Theorem
1.2.1]) gives the following asymptotics

(7) ∀λ� 1 Card{j ∈ N, λj ≤ λ} = c(d)Vol(X)λd +O(λd−1).

An easy consequence is the following lemma.

Lemma 3. — There are two constants α ≥ 1 and C ≥ 1 which only depend on X such that the following
holds

(8) ∀k ∈ N
1

C
(1 + k)d−1 ≤ Card{j ∈ N, λj ∈ (αk, αk + α]} ≤ C(1 + k)d−1.

In particular, the interval (αk, αk + α] contains at least one eigenvalue of
√
−∆.

Proof. For the case k = 0, (8) merely means that the interval (0, α] contains at least one eigenvalue.
This is obviouly true if α ≥ 1 is large enough. We may now assume that k is greater or equal to 1.
One may reformulate (7) in the following way : there are a constant B > 0 and a bounded function
B : [1,+∞[→ [−B,B] such that

∀λ ≥ 1 Card{j ∈ N, λj ≤ λ} = c(d)Vol(X)
[
λd + λd−1B(λ)

]
Forgetting c(d)Vol(X), we have to prove

1

C
kd−1 ≤ (αk + α)d − (αk)d︸ ︷︷ ︸

=Θ1

+ (αk + α)d−1B(αk + α)− αd−1kd−1B(αk)︸ ︷︷ ︸
=Θ2

≤ Ckd−1.

We can find C(d) ≥ 1 large enough such that the following inequalities hold true for any k ∈ N? :

αdkd−1

C(d)
≤ Θ1 ≤ C(d)αdkd−1 and |Θ2| ≤ Bαd−1[(k + 1)d−1 + kd−1] ≤ BC(d)αd−1kd−1.

We now choose α > 2BC(d)2, so we have |Θ2| ≤ αdkd−1

2C(d) . Combining all the previous inequalities, we get

αdkd−1

2C(d)
≤ Θ1 + Θ2 ≤

(
C(d) +

1

2C(d)

)
αdkd−1.

�

It will be convenient to consider from now the increasing sequence (µj)j≥0 of all the eigenvalues of
√
−∆

without multiplicities. The Weyl law therefore implies the following asymptotic

(9) ∀λ� 1 Card{j ∈ N, µj ≤ λ} ≤ c(X)λd.

Note that Lemma 3 also gives us

∀k ∈ N 1 ≤ Card{j ∈ N, µj ∈ (αk, αk + α]} ≤ C(1 + k)d−1.

We claim that the previous allows to prove a weak property of separation of the eigenvalues (µj)j∈N.

Proposition 4. — We denote by α the constant of Lemma 3. There is a constant C = C(X) ≥ 1 and an
increasing sequence of integers (jk)k∈N such that the following holds for any k ∈ N :

3αk ≤ µjk ≤ 3α(k + 1)

(10) µ1+jk − µjk ≥
1

Cµd−1
jk

Proof. The intervals (3αk, 3αk+α] and (3αk+ 2α, 3αk+ 3α] contain each at least one eigenvalue of
√
−∆,

say respectively λ and λ′.



6 JEAN-MARC DELORT & RAFIK IMEKRAZ

3αk 3αk + α

λ λ′

3αk + 2α 3αk + 3α

Moreover, there are at most C(X)(1 +k)d−1 eigenvalues in (3αk, 3αk+ 3α]. Using the inequality λ+α < λ′,
we see that (3αk, 3αk + 3α] contains at least two successive eigenvalues µjk and µ1+jk (between λ and λ′)
such that

µ1+jk − µjk ≥
α

C(X)(1 + k)d−1
.

As µjk belongs to (3αk, 3αk+ 3α], one may replace the lower bound α
C(X)(1+k)d−1 by 1

Cµd−1
jk

(with a constant

C ≥ 1 which only depends on X). �

Remark 5. — There is a simple way that allows to obtain the exponent d − 1 in the lower bound (10).

Remember that the equivalent µk ∼ C(X)k
1
d holds true for a generic metric on X. It is therefore natural to

compare µk+1 − µk to k
1
d−1 ' µ

−(d−1)
k . Proposition 4 says that such an heuristic argument does hold true

in a statistical sense for any metric on X.

Let us define the following intervals I0 := [0, µj0 ] and

(11) Ik := [µ1+jk−1
, µjk ] ⊂ [3α(k − 1), 3α(k + 1)], ∀k ≥ 1.

Proposition 4 says that the family of intervals (Ik)k≥0 has a linear growth in k and that the distance of two
successive intervals behaves like a negative power of their range of frequency.

We also define the spectral projector Πk : L2(X) → L2(X) by Πk = 1Ik(
√
−∆). As each eigenvalue

of
√
−∆ belongs to

⋃
k∈N

Ik, one may define the Sobolev norm ‖·‖Hs(X) of a function φ ∈ Hs(X) with the

following expression

(12) ‖φ‖Hs(X) :=

√∑
k∈N

(1 + k)2s ‖Πk(φ)‖2L2(X), s ∈ R.

Remark 6. — Note that the construction held in the proof of Proposition 4 does not give the same intervals
than those of [DS06, BDGS07]. Assume for instance that X is the usual torus T, then one has µj = j
for each j ∈ N. In this example, one may choose α = 1 in Lemma 3 and µjk = 3k in Proposition 4. In
other words, this construction gives us Ik = [3k− 2, 3k] for each integer k ∈ N? whereas one should naturally
choose Ik = {k}. In both cases, the only relevant thing to see is that the length of Ik is uniformly bounded
with respect to k.

In the same spirit that in the paper [DS06, Part 2.2] which deals with Zoll manifolds, Proposition 4 allows
us to validate the proof of [DS04, Theorem 4.7]. We get the following statement.

Proposition 7 (Delort-Szeftel). — For almost every m > 0 (in the sense of Lebesgue), there are N0 > 0
and C(m,n,N0, d) > 0 such that the following holds. For any integer p ∈ [0, n+2], any (k1, . . . , kn+2) ∈ Nn+2

and any (ξk1 , . . . , ξkn+2
) ∈ (Ik1 × · · · × Ikn+2

) ∩ (sp(
√
−∆)n+2 (where sp(

√
−∆) is the spectrum of

√
−∆),

exactly one of the following two assertions holds

i) (resonant regime) n is even, p equals n+2
2 and there is a permutation τ of the set {1, . . . , p} such that,

for every integer j ∈ [1, p], the equality kτ(j) = kp+j holds true.
ii) (nonresonant regime) we have

(13)

∣∣∣∣∣∣
p∑
j=1

√
m2 + ξ2

kj
−

n+2∑
j=p+1

√
m2 + ξ2

kj

∣∣∣∣∣∣ ≥ C(m,n,N0, d)

(1 + max(ξk1 , . . . , ξkn+2
))N0

.
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Proof. The proof of [DS04, Theorem 4.7, see the lines (5.31),(5.32)] only relies on the existence of two
positive constants C and c such that the following two statements hold

i) Thanks to (9), we may claim that the cardinal of {ξ ∈ (sp(
√
−∆))n+2, |ξ| < λ} is less than Cλ(n+2)d

for any λ ≥ 1.
ii) Consider two tuples (k1, . . . , kn+2) ∈ Nn+2 and (ξk1 , . . . , ξkn+2) ∈ (Ik1 × · · · × Ikn+2) ∩ (sp(

√
−∆))n+2.

If we assume that n is even, p equals n+2
2 and that for any permutation τ of the set {1, . . . , p}, there

is at least one integer j ∈ [1, p] such that kτ(j) 6= kp+j , then Proposition 4 ensures that the following
inequality holds true

p∑
j=1

(ξ2
kτ(j)

− ξ2
kp+j )

2 ≥ c

(1 + max(ξk1 , . . . , ξkn+2
)2(d−2)

.

�

Remark 8. — We learn several things by looking at the proof the of [DS04]. Firstly, the most favorable
case occurs if n is odd. In this case, we we do not need any separation of eigenvalues and no need to select
eigenvalues in packets. By contrast, if n is even then (13) implies that the distance of two eigenvalues which
belong to two different packets Ik and Ik′ is at least comparable to a negative power of their maximum. A
property of separation as the one given by Proposition 4 is therefore unavoidable. More precisely, if n is even,
the mere case which needs Proposition 4 is p = n+2

2 because of simultaneous compensations (see [DS04, Part
5, line (5.39)]).

The selection resonant/nonresonant should be compared to (5). In the particular case where each eigen-
value of −∆ belongs to N, we can state an algebraic counterpart.

Proposition 9. — Consider a positive real algebraic number m of degree deg(m) > 2n+1. For any real
number N0 > 22n+1 − 1, there is a constant C(m,n,N0) > 0 such that the following holds. For any integer
p ∈ [0, n+ 2] and for any (k1, . . . , kn+2) ∈ Nn+2, exactly one of the following two assertions holds

i) (resonant regime) n is even, p equals n+2
2 and there is a permutation τ of the set {1, . . . , p} such that,

for every integer j ∈ [1, p], the equality kτ(j) = kp+j holds true.
ii) (nonresonant regime) we have

(14)

∣∣∣∣∣∣
p∑
j=1

√
m2 + kj −

n+2∑
j=p+1

√
m2 + kj

∣∣∣∣∣∣ ≥ C(m,n,N0)

(1 + max(k1, . . . , kn+2))
N0
2

.

Proposition 9 will be proved at the end of Section 8.
In sections 3, 4, 5 and 7, we will assume the mass m to be generic in the sense of Proposition 7 or

Proposition 9. Moreover, we will denote by N0 the constant which appears in Proposition 7 or Proposition
9. Notice that according to (11), the right hand side of (13) may be written as the one in (14), with the
value of N0 given in Proposition 7.

3. General strategy of normal form

Let us denote by Λm the pseudo-differential operator
√
−∆ +m2 and Dt equals −i∂t as usual. We reduce

the equation (1) by setting u = −(Dt + Λm)w and w = −Re(Λ−1
m u) = − 1

2Λ−1
m u− 1

2Λ−1
m u. We thus get

(15) (Dt − Λm)u = wn+1 =

n+1∑
p=0

cn,pMm,n(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),

where one sets

(16) cn,p :=

(
n+ 1
p

)
(−1)n+1

2n+1
, Mm,n(u1, . . . , un+1) := (Λ−1

m u1) . . . (Λ−1
m un+1).
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After such a reduction to the order one, we have to get a priori Hs bounds of u instead of w since we have
‖u‖Hs(X) ' ‖∂tw‖Hs(X) + ‖w‖Hs+1(X). Instead of (12), it is much more convenient to consider the following
expression

Θs(u) :=
1

2

∑
k∈N

(1 + k)2s+1
∥∥∥ΠkΛ

− 1
2

m u
∥∥∥2

L2(X)
.

We clearly have Θs(u) ' ‖u‖2Hs(X) (up to a multiplicative constant which depends on m and X). In

the case where Ik does contain only one eigenvalue λ, several computations are easier due to the formula
ΛmΠk =

√
λ2 +m2Πk. In the general case that concerns us, the latter equality does not hold true and we

can merely use the formula ΛmΠk = ΠkΛm. This is why we introduce Θs(u). More precisely, the formula
of Θs(u) will indeed provide a very simple computation in the resonant regime (see below (22)). Let us now
compute the derivative of Θs(u) :

d

dt
Θs(u) =

∑
k∈N

(1 + k)2s+1Re 〈u̇,ΠkΛ−1
m u〉

=
∑
k∈N

(1 + k)2s+1Re i

〈Λmu,ΠkΛ−1
m u〉+

n+1∑
p=0

cn,p〈Mm,n(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),ΠkΛ−1

m u〉


The equality 〈Λmu,ΠkΛ−1

m u〉 = ‖Πku‖2L2(X) allows to vanish the first term and we thus get

(17)
d

dt
Θs(u) =

∑
k∈N

n+1∑
p=0

(1 + k)2s+1cn,pRe i〈Mm,n(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),ΠkΛ−1

m u〉.

The strategy of normal form consists in making a perturbation of Θs(u) by a (n + 2)-homogeneous
expression of the form

(18) Θ̃s(u) :=
∑
k∈N

n+1∑
p=0

(1 + k)2s+1cn,pRe 〈M̃m,n,p(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),ΠkΛ−1

m u〉

where M̃m,n,p is expected to be a bounded (n+1)-multilinear operator from Hs(X)n+1 to Hs(X). Using (15)
and assuming that the inner product 〈·, ·〉 is antilinear in its second argument, one computes the derivative
of (18)

(19)
d

dt
Θ̃s(u) = N2n+2(u) +

∑
k∈N

n+1∑
p=0

(1 + k)2s+1cn,pRe i〈Lp(M̃m,n,p)(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),ΠkΛ−1

m u〉,

where

• the term N2n+2(u) is the sum of several (2n + 2)-homogeneous terms obtained by replacing one of the
n+ 2 terms u in (18) by wn+1,
• the operator Lp is defined by the following formula for any (n+ 1)-multilinear operator M and any tuple

of functions (u1, . . . , un+1) :

(20)

Lp (M) (u1, . . . , un+1) =

p∑
j=1

M(

j︷ ︸︸ ︷
u1, . . . , uj−1,Λmuj ,

n+1−j︷ ︸︸ ︷
uj+1, . . . , un+1)

−
n+1∑
j=p+1

M(

j︷ ︸︸ ︷
u1, . . . , uj−1,Λmuj ,

n+1−j︷ ︸︸ ︷
uj+1, . . . , un+1)

−ΛmM(u1, . . . , un+1).

Such a strategy would be of interest if the derivative of Θs(u)− Θ̃s(u) could kill each Mm,n. By comparing

(17) and (19), it is sufficient to construct the operator M̃m,n,p : Hs(X)n+1 → Hs(X) such that the following
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holds true for any integers k ∈ N and p ∈ [0, n+ 1]

Re i〈Mm,n(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),ΠkΛ−1

m u〉 = Re i〈Lp(M̃m,n,p)(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),ΠkΛ−1

m u〉

The boundedness of M̃m,n,p : Hs(X)n+1 → Hs(X) would imply the estimates∣∣∣∣ ddt (Θs(u)− Θ̃s(u)
)∣∣∣∣ = |N2n+2(u)| . ‖u‖2n+2

Hs(X) ,

and we would consequently be able to improve the local existence time to ε−2n thanks to an a priori estimate

on Θs(u)− Θ̃s(u) (which is of the same order than Θs(u) for small solutions).

Let us explain how to construct, at least formally, M̃m,n,p and why we are unable to prove its Hs-

boundedness. The most natural way to define the operator M̃m,n,p is to spectrally decompose u and u and
to solve, for any (k1, . . . , kn+2) ∈ Nn+2, the following homological equation

(21)
Re i〈Mm,n(Πk1u, . . . ,Πkpu,Πkp+1u, . . . ,Πkn+1u),Πkn+2Λ−1

m u〉
= Re i〈Lp(M̃m,n,p)(Πk1u, . . . ,Πkpu,Πkp+1u, . . . ,Πkn+1u),Πkn+2Λ−1

m u〉

We claim that the previous equality is easy to satisfy in the resonant regime. Let us denote byRn+2,p ⊂ Nn+2

the subset of tuples (k1, . . . , kn+2) which are resonant (see condition i of Proposition 7 and 9). For any
(k1, . . . , kn+2) ∈ Rn+2,p, it is clear that the definition (16) implies the following

(22) Re i〈Mm,n(Πk1u, . . . ,Πkpu,Πkp+1
u, . . . ,Πkn+1

u),Πkn+2
Λ−1
m u〉 = Re i

∫
X

p∏
j=1

|ΠkjΛ
−1
m u|2dx = 0

Let us also denote by Ek the range of the spectral projector Πk for any k ∈ N. As Λm and Πk commute,
one has the inclusion Λm(Ek) ⊂ Ek. Because of (22),(21) and (20), it is sufficient to define

∀(k1, . . . , kn+2) ∈ Rn+2,p ∀(u1, . . . , un+1) ∈ Ek1 × · · · × Ekn+1 Πkn+2M̃m,n,p(u1, . . . , un+1) = 0.

We now have to solve (21) for nonresonant tuples (k1, . . . , kn+2) ∈ Nn+2\Rn+2,p. For clarity, we begin by

the case where each interval Ik contains only one eigenvalue, say µk. The formula ΠkΛm =
√
µ2
k +m2Πk

allows to reduce the equation (21) to the following

Re i〈Mm,n(Πk1u, . . . ,Πkpu,Πkp+1u, . . . ,Πkn+1u),Πkn+2Λ−1
m u〉

= Fm,n,p(µk1 , . . . , µkn+2
)Re i〈M̃m,n,p(Πk1u, . . . ,Πkpu,Πkp+1

u, . . . ,Πkn+1
u),Πkn+2

Λ−1
m u〉

with

Fm,n,p(µk1 , . . . , µkn+2
) :=

p∑
j=1

√
µ2
kj

+m2 −
n+2∑
j=p+1

√
µ2
kj

+m2.

A natural choice for the operator M̃m,n,p is therefore

(23) M̃m,n,p(u1, . . . , un+1) =
∑

k∈Nn+2\Rn+2,p

Πkn+2
Mm,n(Πk1u1, . . . ,Πkn+1

un+1)

Fm,n,p(µk1 , . . . , µkn+2
)

,

for any (u1, . . . , un+1) ∈ Hs(X)n+1. With a very weak property of separation (see Proposition 4), the best
known estimates are given by Proposition 7 and Proposition 9 :

(24)
1

|Fm,n,p(µk1 , . . . , µkn+2)|
≤ C(m,n,N0, d)(1 + max(µk1 , . . . , µkn+2

))N0 .

With such inequalities, we do not know if the operator M̃m,n,p is bounded on Hs(X)n+1 to Hs(X). In
Section 5, we explain how to modify this strategy and we will do a partial normal form. In other words, we
will merely eliminate a part of each term Mm,n.

We end this part by explaining how to deal with the general case where Ik may contain several eigenvalues.
For the sake of clarity, we introduce a notation all along this part. Considering n+ 2 integers k1, . . . , kn+2,
we denote by k?1 ≥ k?2 ≥ k?3 the three largest ones among 1 + k1, . . . , 1 + kn+2. For instance

(25) k?1 = 1 + max(k1, . . . , kn+2).
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The following result has to be seen has an analogue of [DS06, Proposition 2.4] but our proof is much simpler
because we may authorize a loss of a power of the largest frequency (this was forbidden in [DS06]).

Proposition 10. — Consider an integer p ∈ [0, n + 1] and a tuple (k1, . . . , kn+2) ∈ Nn+2\Rn+2,p. Denote
by Mult(Ek1 × · · · × Ekn+1

, Ekn+2
) the finite-dimensional vector space of multilinear operators M : Ek1 ×

· · · ×Ekn+1
→ Ekn+2

. We endow Mult(Ek1 × · · · ×Ekn+1
, Ekn+2

) with its natural norm. The linear operator
defined in (20)

Lp : Mult(Ek1 × · · · × Ekn+1
, Ekn+2

)→ Mult(Ek1 × · · · × Ekn+1
, Ekn+2

)

is invertible and its inverse fulfills the estimate∥∥L−1
p

∥∥ ≤ C(m,n,N0, X)(k?1)N0+ d−1
2 (k?3)

n(d−1)
2 .

The previous result allows to define a global inverse of Lp. The most rigorous way to define such an
operator is to introduce the algebraic sum

E∞ :=
⊕
k∈N

Ek,

which can be seen has a dense vectorial subspace of L2(X). Let us denote by D′(X) the vectorial space
of distributions on X. For any multilinear operator M : En+1

∞ → D′(X) and for any (k1, . . . , kn+2) ∈
Nn+2\Rn+2,p, the operator Πkn+2

M(Πk1•, . . . ,Πkn+1
•) is well defined as an element of Mult(Ek1 × · · · ×

Ekn+1 , Ekn+2). We may thus define for any (u1, . . . , un+1) ∈ Ek1 × · · · × Ekn+1 :

(26)
[
Πkn+2

L−1
p (M)

]
(u1, . . . , un+1) := L−1

p

(
Πkn+2

M(Πk1•, . . . ,Πkn+1
•)
)

(u1, . . . , un+1),

The previous formula allows us to define
(27)

∀(u1, . . . , un+1) ∈ En+1
∞ L−1

p (M)(u1, . . . , un+1) :=
∑

k∈Nn+2\Rn+2,p

[
Πkn+2L−1

p (M)
]

(Πk1u1, . . . ,Πkn+1un+1).

In other words, if one wants to solve (21) then Proposition 10 says that the good candidate for M̃m,n,p is
L−1
p (Mm,n) (instead of (23)). To finish this part, we note that the formula (27) is essentially formal and we

need to study its convergence.

4. Proof of Proposition 10

For any integer j ∈ [1, n + 2], remember that Ekj is the range of Πkj = 1Ikj (
√
−∆). Let us denote by

(φkj ,`j )`j an orthonormal basis of eigenfunctions of
√
−∆ on Ekj (the integer `j runs over [1,dim(Ekj )]∩N).

We also write
√
−∆φkj ,`j = λkj ,`jφkj ,`j with λkj ,`j ∈ Ikj . Let us begin the proof :

∀M ∈ Mult(Ek1 × · · · × Ekn+1
, Ekn+2

), ∀(u1, . . . , un+1) ∈ Ek1 × · · · × Ekn+1

M(u1, . . . , un+1) =
∑

1≤`1≤dim(Ek1 )
···

1≤`n+2≤dim(Ekn+2
)

〈M(φk1,`1 , . . . , φkn+1,`n+1), φkn+2,`n+2〉φkn+2,`n+2

n+1∏
j=1

〈uj , φkj ,`j 〉.

The definition (20) of Lp ensures that Lp(M)(u1, . . . , un+1) equals∑
1≤`1≤dim(Ek1 )

···
1≤`n+2≤dim(Ekn+2

)

Fm,n,p(λk1,`1 , . . . , λkn+2,`n+2
)〈M(φk1,`1 , . . . , φkn+1,`n+1

), φkn+2,`n+2
〉φkn+2,`n+2

n+1∏
j=1

〈uj , φkj ,`j 〉.

The previous formula may be rephrased as follows : the operator Lp is diagonalizable on Mult(Ek1 × · · · ×
Ekn+1

, Ekn+2
), and for any (`1, . . . , `n+2), the multilinear operator

(u1, . . . , un+1) 7→ φkn+2,`n+2

n+1∏
j=1

〈uj , φkj ,`j 〉,
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is nothing else than an eigenvector of Lp associated to the eigenvalue Fm,n,p(λk1,`1 , . . . , λkn+2,`n+2). Remem-
ber that we are in a nonresonant regime, so each eigenvalue Fm,n,p(λk1,`1 , . . . , λkn+2,`n+2) is nonzero. It is
thus clear that Lp is invertible and that L−1

p (M)(u1, . . . , un+1) equals∑
1≤`1≤dim(Ek1 )

···
1≤`n+2≤dim(Ekn+2

)

〈M(φk1,`1 , . . . , φkn+1,`n+1), φkn+2,`n+2〉
Fm,n,p(λk1,`1 , . . . , λkn+2,`n+2)

φkn+2,`n+2

n+1∏
j=1

〈uj , φkj ,`j 〉.

In order to make our arguments symmetric, it is convenient to remark that for any un+2 ∈ Ekn+2
, the scalar

product 〈L−1
p (M)(u1, . . . , un+1), un+2〉 equals∑

1≤`1≤dim(Ek1 )
···

1≤`n+2≤dim(Ekn+2
)

〈M(φk1,`1 , . . . , φkn+1,`n+1
), φkn+2,`n+2

〉
Fm,n,p(λk1,`1 , . . . , λkn+2,`n+2

)

n+2∏
j=1

〈uj , φkj ,`j 〉.

Combining (24) and the Cauchy-Schwarz inequality, we get the following upper bound, up to a multiplicative
constant C(m,n,N0, X), of |〈L−1

p (M)(u1, . . . , un+1), un+2〉|
(28)

(1 + max(k1, . . . , kn+2))N0

( ∑
1≤`1≤dim(Ek1 )

···
1≤`n+2≤dim(Ekn+2

)

|〈M(φk1,`1 , . . . , φkn+1,`n+1
), φkn+2,`n+2

〉|2
) 1

2 n+2∏
j=1

‖uj‖L2(X)

Without loss of generality, we may assume that kn+2 ≥ · · · ≥ k1 holds true (the following arguments are still
available without this assumption). Using the linearity with respect to the kn+2th variable and the fact that
(φkn+2,`n+2

)`n+2
is an orthonormal basis of Ekn+2

, we can write for any fixed (`1, . . . , `n+1) :

dim(Ekn+2
)∑

`n+2=1

|〈M(φk1,`1 , . . . , φkn+1,`n+1), φkn+2,`n+2〉|2 = sup
un+2∈Ekn+2

‖un+2‖L2(X)=1

∣∣〈M(φk1,`1 , . . . , φkn+1,`n+1), un+2)〉
∣∣2 .

Since the previous bound is clearly less or equal to ‖M‖2, we can bound (28) by

(1 + kn+2)N0

√
dim(Ek1)× · · · × dim(Ekn+1

) ‖M‖
n+2∏
j=1

‖uj‖L2(X) .

Remember that Ik is a subinterval of [3α(k − 1), 3α(k + 1)] for any k ∈ N? (see (11)). Forgetting un+2 and
using Lemma 3, we get the bound∥∥L−1

p (M)(u1, . . . , un+1)
∥∥
L2(X)

. (1 + kn+2)N0+ d−1
2 (1 + kn)

n(d−1)
2 ‖M‖

n+1∏
j=1

‖uj‖L2(X)

up to a multiplicative constant C(m,n,N0, X).

5. Strategy of partial normal form

We introduce a cut-off function χ : R→ [0,+∞[ fixed once and for all. We may assume that the following
holds true for all η ∈ R

|η| ≤ 1 ⇒ χ(η) = 1,
1 < |η| < 2 ⇒ 0 < χ(η) < 1,

2 ≤ |η| ⇒ χ(η) = 0.

Let us fix a parameter δ > 0 that will be chosen at the end and consider a real number ε ∈ (0, 1). Writing
u = χ(εδΛm)u+ (1− χ)(εδΛm)u, we then decompose Mm,n as the sum of two terms :

(29) Mm,n(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u) = Mm,n,ε,δ(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u) +Rm,n,p,ε,δ(u),
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where Mm,n,ε,δ and Rm,n,p,ε,δ(u) are defined by

Mm,n,ε,δ(u1, . . . , un+1) := (Λ−1
m χ(εδΛm)u1))× · · · × (Λ−1

m χ(εδΛm)un+1))(30)

Rm,n,p,ε,δ(u) :=
∑
Υ

 p∏
j=1

Λ−1
m χj(ε

δΛm)u

 n+1∏
j=p+1

Λ−1
m χj(ε

δΛm)u

 ,

and (χ1, . . . , χn+2) runs over the set Υ := {χ, 1 − χ}n+1\{(χ, . . . , χ)} of size 2n+1 − 1 (in other words, at
least one of the functions χj equals 1− χ). The following lemma will be proved below.

Lemma 11. — For any s > dim(X)
2 , any u ∈ Hs(X) and any couple (ε, δ) ∈ (0, 1)× (0,+∞), the following

holds :

‖Rm,n,p,ε,δ(u)‖Hs(X) ≤ C(m,n, s,X)εδ ‖u‖n+1
Hs(X) .

The following consequently holds

(31)

∣∣∣∣∣∑
k∈N

(1 + k)2s+1Re i〈Rm,n,p,ε,δ(u),ΠkΛ−1
m u〉

∣∣∣∣∣ ≤ C(m,n, s,X)εδ ‖u‖n+2
Hs(X) .

Combining (17) and (29), the previous lemma allows us to write

(32)
d

dt
Θs(u) =

∑
k∈N

n+1∑
p=0

(1 + k)2s+1cn,pRe i〈Mm,n,ε,δ(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),ΠkΛ−1

m u〉+Om,n,s,X(εδ ‖u‖n+2
Hs(X)).

We now eliminate Mm,n,ε,δ by a normal form.

Proposition 12. — There is s0 = s0(d, n,m) > 0 such that for any s ∈ (s0,+∞), any ε ∈ (0, 1), any
δ > 0, the series (27) which defines the operator L−1

p (Mm,n,ε,δ) converges in the Banach space of bounded

(n+ 1)-multilinear operators from Hs(X)n+1 to Hs(X). Moreover, we have the estimate

(33)
∥∥L−1

p (Mm,n,ε,δ)(u1, . . . , un+1)
∥∥
Hs(X)

≤ C(m,n,X, s)ε−δ(N0+ d−1
2 )

n+1∏
j=1

‖uj‖Hs(X) ,

for any (u1, . . . , un+1) ∈ Hs(X)n+1. Adding one more function un+2 ∈ Hs(X), the following holds
(34)∣∣∣∣∣∑
k∈N

(1 + k)2s+1Re 〈L−1
p (Mm,n,ε,δ)(u1, . . . , un+1),Λ−1

m Πkun+2〉

∣∣∣∣∣ ≤ C(m,n,X, s)ε−δ(N0+ d−1
2 )

n+2∏
j=1

‖uj‖Hs(X) .

We can now prove Theorem 1 and 2. The regularity s is assumed to be larger than max
(

dim(X)
2 , s0

)
.

Assume that u is a solution of (15), so one has u̇ = iΛmu+ iwn+1. Note that the inequalities∥∥wn+1
∥∥
Hs(X)

≤ C(m,n,X, s) ‖u‖n+1
Hs−1(X)

≤ C(m,n,X, s) ‖u‖n+1
Hs(X)(35)

obviously hold true since Hs(X) is an algebra and since w equals −Re(Λ−1
m u). Assume that the initial data

u(0) satisfies Θs(u(0)) ≤ ε2 and consider the upper bound of the set of the real numbers tmax ≥ 0 such that
Θs(u(t)) ≤ 2ε2 holds true for any t ∈ [0, tmax]. As explained in Section 3 (see (19)), one has
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d

dt

∑
k∈N

(1 + k)2s+1Re 〈L−1
p (Mm,n,ε,δ)(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),Λ−1

m Πku〉

=
∑
k∈N

(1 + k)2s+1Re i〈Mm,n,ε,δ(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),Λ−1

m Πku〉

+
∑
k∈N

p∑
j=1

(1 + k)2s+1Re i〈L−1
p (Mm,n,ε,δ)(

j︷ ︸︸ ︷
u, . . . , u, iwn+1,

p−j︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),Λ−1

m Πku〉

+
∑
k∈N

n+1∑
j=p+1

(1 + k)2s+1Re i〈L−1
p (Mm,n,ε,δ)(

p︷ ︸︸ ︷
u, . . . , u,

j−p︷ ︸︸ ︷
u, . . . ,−iwn+1,

n+1−j︷ ︸︸ ︷
u, . . . , u,Λ−1

m Πku〉

+
∑
k∈N

(1 + k)2s+1Re i〈L−1
p (Mm,n,ε,δ)(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u), iΛ−1

m Πkw
n+1〉.

Thanks to (32), (35) and Proposition 12, we can ensure that

(36)
d

dt

Θs(u)−
∑
k∈N

n+1∑
p=0

(1 + k)2s+1cn,pRe 〈L−1
p (Mm,n,ε,δ)(

p︷ ︸︸ ︷
u, . . . , u,

n+1−p︷ ︸︸ ︷
u, . . . , u),Λ−1

m Πku〉



is Om,n,X,s
(
εδ+n+2 + ε2n+2−δ(N0+ d−1

2 )
)

. The previous upper bound is minimal if one chooses δ := n
N0+ d+1

2

.

Moreover, for any t ∈ [0, tmax], Proposition 12 gives us the following estimate (up to a multiplicative constant
C(m,n,X, s))

∣∣∣∣∣∣∣
∑
k∈N

n+1∑
p=0

(1 + k)2s+1cn,pRe 〈L−1
p (Mm,n,ε,δ)(

p︷ ︸︸ ︷
u(t), . . . , u(t),

n+1−p︷ ︸︸ ︷
u(t), . . . , u(t)),ΠkΛ−1

m u(t)〉

∣∣∣∣∣∣∣ . εn+2−δ(N0+ d−1
2 )

. ε
2+ n

N0+ d+1
2 .

The only thing to remark is that the previous bound is negligible with respect to ε2 if ε is small enough.
This fact means that on [0, tmax], the following two quantities are of order ε2 :

Θs(u(t)) and Θs(u(t))−
∑
k∈N

n+1∑
p=0

(1+k)2s+1cn,pRe i〈L−1
p (Mm,n,ε,δ)(

p︷ ︸︸ ︷
u(t), . . . , u(t),

n+1−p︷ ︸︸ ︷
u(t), . . . , u(t)),ΠkΛ−1

m u(t)〉.

By integrating (36) on [0, tmax], we thus get

ε2 ≤ C(m,n,X, s)tmaxε
n+2+ n

N0+ d+1
2 ,

ε
−n

(
1+ 1

N0+ d+1
2

)
≤ C(m,n,X, s)tmax.(37)

Similar arguments work for negative times. This finishes the proofs of Theorem 1 and Theorem 2.
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6. Proof of Lemma 11

Let us denote by (Π•k)k≥0 the sequence of the spectral projectors associated to the sequence of eigenvalues
(µk)k≥0. We clearly have

Λ−1
m (1− χ)(εδΛm)u =

∑
k∈N

(1− χ)(εδ
√
µ2
k +m2)√

µ2
k +m2

Π•k(u)

∥∥Λ−1
m (1− χ)(εδΛm)u

∥∥2

Hs(X)
≤

∑
k∈N

(1 + µk)2s

µ2
k +m2

‖Π•k(u)‖2L2(X) 1(ε−δ,+∞)

(√
µ2
k +m2

)
.s,X ε2δ

∑
k∈N

(1 + µk)2s ‖Π•k(u)‖2L2(X)

.s,X ε2δ ‖u‖2Hs(X)∥∥Λ−1
m (1− χ)(εδΛm)u

∥∥
Hs(X)

.s,X εδ ‖u‖Hs(X) .

Moreover, we have ∥∥Λ−1
m χ(εδΛm)u

∥∥
Hs(X)

≤
∥∥Λ−1

m u
∥∥
Hs(X)

≤ C(m, s,X) ‖u‖Hs(X) .

Using that Hs(X) is an algebra and that εδ belongs to (0, 1), we obtain the following estimate

‖Rm,n,p,ε,δ(u)‖Hs(X) ≤ C(m,n, s,X)εδ ‖u‖n+1
Hs(X) .

The end of the proof is straightforward∑
k∈N

(1 + k)2s+1|Re i〈Rm,n,p,ε,δ(u),ΠkΛ−1
m u〉|

≤
∑
k∈N

(1 + k)s ‖ΠkRm,n,p,ε,δ(u)‖L2(X) (1 + k)s+1
∥∥ΠkΛ−1

m u
∥∥
L2(X)

≤ C(m,n, s,X)εδ ‖u‖n+1
Hs(X)

∥∥Λ−1
m u

∥∥
Hs+1(X)

≤ C(m,n, s,X)εδ ‖u‖n+2
Hs(X) .

7. Proof of Proposition 12

Assuming (33) the proof of (34) is similar to that of (31), and the proof of (33) will be a consequence of
Proposition 16 and Proposition 17.

In the sequel, we will use the notations k?1 , k
?
2 , k

?
3 introduced in (25). Using that the range of each spectral

projector Πk is the subspace of functions whose frequencies lie in Ik ⊂ [3αk − 3α, 3αk + 3α], we can state
the estimates proved in [DS06, Proposition 1.2.1].

Proposition 13. — There are a real number ν = ν(n, d) > 0 and, for any interger N ≥ 0, a real number
C(n,X,N) > 0 such that for any (u1, . . . , un+1) ∈ L2(X)n+1, any nonnegative integers (k1, . . . , kn+2) ∈
Nn+2 the following inequality holds

(38)
∥∥Πkn+2

(
Πk1(u1) . . .Πkn+1(un+1)

)∥∥
L2(X)

≤ C(n,X,N)
(k?3)ν+N

(k?1 − k?2 + k?3)N

n+1∏
j=1

‖uj‖L2(X) .

Remark 14. — The previous statement is exactly the same than [DS06, Proposition 1.2.1] thanks to the
self-adjointness of the spectral projector Πkn+2

and the formula∥∥Πkn+2

(
Πk1(u1) . . .Πkn+1(un+1)

)∥∥
L2(X)

= sup
un+2∈L2(X)
‖un+2‖L2(X)=1

∣∣∣∣∫
X

Πk1(u1) . . .Πkn+2(un+2)dx

∣∣∣∣ ,
where dx is the Riemannian volume on X.
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Corollary 15. — For any ε ∈ (0, 1), any integer N ≥ 0, any tuple (k1, . . . , kn+2) ∈ Nn+2\Rn+2,p (see
(23)), and for any (u1, . . . , un+2) ∈ L2(X)n+2 the following inequality holds true∥∥[Πkn+2

L−1
p (Mm,n,ε,δ)

]
(Πk1u1, . . . ,Πkn+1

un+1)
∥∥
L2(X)

≤ C(m,n,X,N, δ)
(k?1)N0+ d−1

2 (k?3)ν+N

(k?1 − k?2 + k?3)N

n+1∏
j=1

1[0,βε−δ](1 + kj)

1 + kj

n+1∏
j=1

∥∥Πkjuj
∥∥
L2(X)

 ,

where N0 is the constant which appears in (24), β > 0 is a constant which merely depends on X, and ν is a
a constant which merely depends on d and n.

Proof. Thanks to (38) and (30), we can bound

∥∥Πkn+2
Mm,n,ε,δ(Πk1u1, . . . ,Πkn+1

un+1)
∥∥
L2(X)

=

∥∥∥∥∥∥Πkn+2

n+1∏
j=1

ΠkjΛ
−1
m χ(εδΛm)uj

∥∥∥∥∥∥
L2(X)

.n,X,N
(k?3)ν+N

(k?1 − k?2 + k?3)N

n+1∏
j=1

∥∥Λ−1
m χ(εδΛm)Πkjuj

∥∥
L2(X)

.

We now remember that Ikj is included in [3α(kj − 1), 3α(kj + 1)] (see (11)) and that the cut-off function χ

has support in [−2, 2]. If we therefore assume kj ≥ 2 and use the inequality kj − 1 ≥ 1
3 (kj + 1) then we have

∥∥Λ−1
m χ(εδΛm)Πkjuj

∥∥
L2(X)

≤ C(m)
1[0,2ε−δ]

(√
m2 + 9α2(kj − 1)2)

)
1 + kj

∥∥Πkjuj
∥∥
L2(X)

≤ C(m)
1[0,2ε−δ](3α(kj − 1))

1 + kj

∥∥Πkjuj
∥∥
L2(X)

≤ C(m)
1[0,2ε−δ](α(kj + 1))

1 + kj

∥∥Πkjuj
∥∥
L2(X)

.

Let us now explain why a similar inequality also holds true for kj ∈ {0, 1}. Since χ is a cut-off function, it
is clear that Λ−1

m χ(εδΛm) is a linear bounded operator on L2(X) whose norm is less or equal to

C ′(m) := ‖χ‖L∞(X)

∥∥Λ−1
m

∥∥
L2(X)→L2(X)

.

Noticing the inequality 2ε−δ ≥ 2, we get for any kj ∈ {0, 1} :∥∥Λ−1
m χ(εδΛm)Πkjuj

∥∥
L2(X)

≤ 2C ′(m)×
1[0,2ε−δ](kj + 1)

1 + kj

∥∥Πkjuj
∥∥
L2(X)

.

Now introduce β := max
(
2, 2

α

)
so we have for any kj ∈ N :∥∥Λ−1

m χ(εδΛm)Πkjuj
∥∥
L2(X)

≤ max(C(m), 2C ′(m))
1[0,βε−δ](kj + 1)

1 + kj

∥∥Πkjuj
∥∥
L2(X)

.

Combining all the previous arguments, we have obtained a bound of the norm of the multilinear operator

Ek1 × · · · × Ekn+1
→ Ekn+2

(u1, . . . , un+1) 7→ Πkn+2
Mm,n,ε,δ(u1, . . . , un+1).

Using Proposition 10 and (26), we may increase ν and get the following upper bound∥∥[Πkn+2
L−1
p (Mm,n,ε,δ)

]
(Πk1u1, . . . ,Πkn+1

un+1)
∥∥
L2(X)

≤ C(m,n,X,N)
(k?1)N0+ d−1

2 (k?3)ν+N

(k?1 − k?2 + k?3)N

n+1∏
j=1

1[0,βε−δ](1 + kj)

1 + kj

∥∥Πkjuj
∥∥
L2(X)

.

�
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We now make the following decomposition

L−1
p (Mm,n,ε,δ) = L−1

p,1(Mm,n,ε,δ) + L−1
p,2(Mm,n,ε,δ),

L−1
p,1(Mm,n,ε,δ)(u1, . . . , un+1) :=

∑
k∈Nn+2\Rn+2,p

k?1≤2k?2

[
Πkn+2L−1

p (Mm,n,ε,δ)
]

(Πk1u1, . . . ,Πkn+1un+1),(39)

L−1
p,2(Mm,n,ε,δ)(u1, . . . , un+1) :=

∑
k∈Nn+2\Rn+2,p

2k?2<k
?
1

[
Πkn+2

L−1
p (Mm,n,ε,δ)

]
(Πk1u1, . . . ,Πkn+1

un+1).(40)

In other words L−1
p,1(Mm,n,ε,δ) is the part of L−1

p (Mm,n,ε,δ) for which the largest two eigenvalues are of

the same order whereas L−1
p,2(Mm,n,ε,δ) is the part for which the largest eigenvalue is much larger than the

other ones. Let us begin with the operator L−1
p,1(Mm,n,ε,δ).

Proposition 16. — There is s0 = s0(d, n) > 0 such that for any s ∈ (s0,+∞), any ε ∈ (0, 1), any δ > 0,
the series (39) which defines the operator L−1

p,1(Mm,n,ε,δ) converges in the Banach space of bounded (n+ 1)-

multilinear operators from Hs(X)n+1 to Hs(X). Moreover, for any (u1, . . . , un+1) ∈ Hs(X)n+1, we have

∥∥L−1
p,1(Mm,n,ε,δ)(u1, . . . , un+1)

∥∥
Hs(X)

≤ C(m,n,X, s)ε−δ(N0+ d−1
2 )

n+1∏
j=1

‖uj‖Hs(X) .

Proof. We assume ‖uj‖Hs(X) = 1 for simplicity for each integer j. So we have the following relation with

respect to the variable (k1, . . . , kn+1) ∈ Nn+1

(41)

∥∥∥∥∥∥
n+1∏
j=1

(1 + kj)
s
∥∥Πkjuj

∥∥
L2(X)

∥∥∥∥∥∥
`2(Nn+1)

= 1.

We have to work with the following equality

∥∥L−1
p,1(Mm,n,ε,δ)(u1, . . . , un+1)

∥∥2

Hs

=
∑

kn+2∈N
(1 + kn+2)2s

∥∥∥∥∥ ∑
(k1,...,kn+1)∈Nn+1

k∈Nn+2\Rn+2,p; k?1≤2k?2

[Πkn+2
L−1
p (Mm,n,ε,δ)](Πk1u1, . . . ,Πkn+1

un+1)

∥∥∥∥∥
2

L2(X)

≤
∑

kn+2∈N
(1 + kn+2)2s

( ∑
(k1,...,kn+1)∈Nn+1

k∈Nn+2\Rn+2,p; k?1≤2k?2

∥∥[Πkn+2
L−1
p (Mm,n,ε,δ)](Πk1u1, . . . ,Πkn+1

un+1)
∥∥
L2(X)

)2

.

Corollary 15 with N = 0 gives the following upper bounds∥∥[Πkn+2
L−1
p (Mm,n,ε,δ)](Πk1u1, . . . ,Πkn+1

un+1)
∥∥
L2(X)

≤ C(m,n,X)(k?1)N0+ d−1
2 (k?3)ν1[0,βε−δ](1 + max(k1, . . . , kn+1))

n+1∏
j=1

∥∥Πkjuj
∥∥
L2(X)

(1 + kj)

≤ C(m,n,X)
(k?1)N0+ d−1

2 (k?3)ν1[0,βε−δ](1 + max(k1, . . . , kn+1))∏n+1
j=1 (1 + kj)s+1

n+1∏
j=1

(1 + kj)
s
∥∥Πkjuj

∥∥
L2(X)

.



LONG TIME EXISTENCE OF THE KLEIN-GORDON EQUATION ON A COMPACT MANIFOLD 17

Thanks to the Cauchy-Schwarz inequality with (41) and a symmetry argument, we get the following bounds∥∥L−1
p,1(Mm,n,ε,δ)(u1, . . . , un+1)

∥∥2

Hs

.m,nX
∑

kn+2∈N
(1 + kn+2)2s

( ∑
(k1,...,kn+1)∈Nn+1

k?1≤2k?2

(
(k?1)N0+ d−1

2 (k?3)ν1[0,βε−δ](1 + max(k1, . . . , kn+1))∏n+1
j=1 (1 + kj)s+1

)2)

.m,n,X
∑

k∈Nn+2

k?1≤2k?2

(1 + kn+2)2s(k?1)2N0+d−1(k?3)2ν1[0,βε−δ](1 + max(k1, . . . , kn+1))

n+1∏
j=1

1

(1 + kj)2s+2

.m,n,X
∑

k∈Nn+2

k?1≤2k?2
k1≤···≤kn+1

(1 + kn+2)2s(k?1)2N0+d−1(k?3)2ν1[0,βε−δ](1 + kn+1)

n+1∏
j=1

1

(1 + kj)2s+2
.

Note that the conditions k1 ≤ · · · ≤ kn+1 imply the following two inequalities k?2 ≤ kn+1 and k?3 ≤ kn. The
condition k?1 ≤ 2k?2 ≤ 2kn+1 leads to the following upper bound

(42) C(m,n,X)
∑

k∈Nn+2

k?1≤2k?2
k1≤···≤kn+1

(1 + kn+2)2sk2N0+d−1
n+1 1[0,βε−δ](1 + kn+1)

(1 + kn)2s+2−2ν(1 + kn+1)2s+2

n−1∏
j=1

1

(1 + kj)2s+2
.

We claim that the inequality kn+2 ≤ 2kn+1 always holds true. This is indeed obvious if kn+2 ≤ kn+1 holds
true. If kn+2 is greater than kn+1, then the condition k?1 ≤ 2k?2 means exactly that kn+2 ≤ 2kn+1 holds true.
This allows us to get rid of s and kn+2 :

(1 + kn+2)2sk2N0+d−1
n+1 1[0,βε−δ](1 + kn+1)

(1 + kn+1)2s+2
≤ C(s)(1 + kn+1)2N0+d−31[0,βε−δ]×[0,2βε−δ](1 + kn+1, 1 + kn+2).

We now easily see that if 2s+ 2 is large enough then we can bound (42) by

C(m,n,X, s)

 ∑
kn+1∈N

(1 + kn+1)2N0+d−31[0,βε−δ](1 + kn+1)

 ∑
kn+2∈N

1[0,2βε−δ](1 + kn+2)

 ,

which is less than C(m,n,X, s)ε−δ(2N0+d−1). �

Let us now study the operator L−1
p,2(Mm,n,ε,δ).

Proposition 17. — There is s0 = s0(d, n,m) > 0 such that for any s ∈ (s0,+∞), any ε ∈ (0, 1) and any
δ > 0, the series (40) which defines the operator L−1

p,2(Mm,n,ε,δ) converges in the Banach space of bounded

(n+ 1)-multilinear operators from Hs(X)n+1 to Hs(X). Moreover, for any (u1, . . . , un+1) ∈ Hs(X)n+1, we
have ∥∥L−1

p,2(Mm,n,ε,δ)(u1, . . . , un+1)
∥∥
Hs(X)

≤ C(m,n,X, s)

n+1∏
j=1

‖uj‖Hs(X) .

Proof. We begin as in the proof of Proposition 16 by assuming that each uj has a norm 1 in Hs(X). A
symmetry argument and Corollary 15 give, for any integer N , the following upper bound∥∥L−1

p,2(Mm,n,ε,δ)(u1, . . . , un+1)
∥∥2

Hs

≤ C(m,n,X,N)
∑

k∈Nn+2

k1≤···≤kn+1

2k?2<k
?
1

(1 + kn+2)2s(k?1)2N0+d−1(k?3)2ν+2N

(k?1 − k?2 + k?3)2N

n+1∏
j=1

1

(1 + kj)2s+2
.
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In the previous sum, the inequality k?1 − k?2 + k?3 ≥ 1
2k

?
1 trivially holds. Hence, one gets the bound

(43) C(m,n,X,N)
∑

k∈Nn+2

k1≤···≤kn+1

(1 + kn+2)2s(k?3)2ν+2N

(k?1)2N−2N0−d+1

n+1∏
j=1

1

(1 + kj)2s+2
.

We consider below three cases according to the position of kn+2 with respect to kn and kn+1. In the
computations below, we first choose s large enough and then N large enough such that all the computations
are licit.

Case kn ≤ kn+1 ≤ kn+2. Hence, we have k?1 = 1 + kn+2 and k?3 = 1 + kn. Provided that 2s+ 2 > 1, we
can write ∑

k∈Nn+2

k1≤···≤kn+2

(1 + kn+2)2s(1 + kn)2N+2ν

(1 + kn+2)2N−2N0−d+1

n+1∏
j=1

1

(1 + kj)2s+2

≤ C(n, s,X)
∑

(kn,kn+1,kn+2)∈N3

kn≤kn+1≤kn+2

(1 + kn)2N−2s+2ν−2

(1 + kn+2)2N−2s−2N0−d+1(1 + kn+1)2s+2
.

We may assume that 2N − 2s+ 2ν − 2 is positive and hence get the following upper bound

∑
(kn+1,kn+2)∈N2

kn+1≤kn+2

(1 + kn+1)2N−2s+2ν−1

(1 + kn+2)2N−2s−2N0−d+1(1 + kn+1)2s+2
=

∑
(kn+1,kn+2)∈N2

kn+1≤kn+2

(1 + kn+1)2N−4s+2ν−3

(1 + kn+2)2N−2s−2N0−d+1
.

With the same idea, we assume that the exponent 2N − 4s+ 2ν − 3 is positive in order to get the bound

∑
kn+2∈N

(1 + kn+2)2N−4s+2ν−2

(1 + kn+2)2N−2s−2N0−d+1
=

∑
kn+2∈N

1

(1 + kn+2)2s−2ν−2N0−d+3
.

The previous series converges if we choose s large enough (this condition is independent of N).
Case kn ≤ kn+2 ≤ kn+1. Hence, we have k?1 = 1 + kn+1 and k?3 = 1 + kn. The bound (43) becomes up

to a multiplicative constant C(m,n,X,N) :

(44)
∑

k∈Nn+2

k1≤···≤kn≤kn+2≤kn+1

(1 + kn+2)2s

(1 + kn)2s−2N−2ν+2(1 + kn+1)2s+2N−2N0−d+3

n−1∏
j=1

1

(1 + kj)2s+2
.

We follow the same strategy of that of the previous case. We first choose s large enough and then N large
enough. Hence, we can bound (44) by

C(n, s,X)
∑

(kn,kn+1,kn+2)∈N3

kn≤kn+2≤kn+1

(1 + kn+2)2s(1 + kn)−2s+2N+2ν−2

(1 + kn+1)2s+2N−2N0−d+3

≤ C(n, s,X)
∑

(kn+1,kn+2)∈N2

kn+2≤kn+1

(1 + kn+2)2N+2ν−1

(1 + kn+1)2s+2N−2N0−d+3

≤ C(n, x,X)
∑

kn+1∈N

(1 + kn+1)2N+2ν

(1 + kn+1)2s+2N−2N0−d+3

≤ C(n, s,X)
∑

kn+1∈N

1

(1 + kn+1)2s−2ν−2N0−d+3
< +∞.
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Case kn+2 ≤ kn ≤ kn+1. For this case, we have k?1 = 1 + kn+1. In the case n = 1, we have k?3 = 1 + k3 and
the series in (43) is less than∑

k∈N3

k3≤k1≤k2

(1 + k3)2N+2s+2ν

(1 + k2)2N+2s−2N0−d+3(1 + k1)2s+2
.

∑
k∈N2

k1≤k2

(1 + k1)2N+2ν−1

(1 + k2)2N+2s−2N0−d+3

.
∑
k2∈N

1

(1 + k2)2s−2N0−d+3−2ν
< +∞.

In the case n ≥ 2, we have k?3 = 1 + max(kn+2, kn−1) and the bound (43) becomes :∑
k∈Nn+2

k1≤···≤kn+1

kn+2≤kn

(1 + kn+2)2s(1 + max(kn+2, kn−1))2N+2ν

(1 + kn+1)2N−2N0−d+1

n+1∏
j=1

1

(1 + kj)2s+2
.

As in the previous two cases, one chooses 2s+ 2 to be greater than 1 so that we are reduced to bound

(45) C(n, s,X)
∑

(kn−1,kn,kn+1,kn+2)∈N4

kn−1≤kn≤kn+1

kn+2≤kn

(1 + kn+2)2s(1 + max(kn+2, kn−1))2N+2ν

(1 + kn+1)2s+2N−2N0−d+3(1 + kn−1)2s+2(1 + kn)2s+2
.

We now eliminate kn in the previous sum by introducing the condition kn+2 ≤ kn+1 and summing in
kn ∈ [kn+2,+∞[∩N. This allows us to bound (45) by

(46) C(n, s,X)
∑

(kn−1,kn+1,kn+2)∈N3

kn−1≤kn+1

kn+2≤kn+1

(1 + max(kn+2, kn−1))2N+2ν

(1 + kn+1)2s+2N−2N0−d+3(1 + kn−1)2s+2(1 + kn+2)
.

Using the same ideas as above, we can get the following estimates of (46) if one chooses s large enough and
then N large enough∑

(kn−1,kn+1,kn+2)∈N3

kn−1≤kn+1

kn+2≤kn+1

(1 + kn+2)2N+2ν−1

(1 + kn+1)2s+2N−2N0−d+3(1 + kn−1)2s+2
+

(1 + kn−1)2N−2s+2ν−2

(1 + kn+1)2s+2N−2N0−d+3(1 + kn+2)

.
∑

(kn+1,kn+2)∈N2

kn+2≤kn+1

(1 + kn+2)2N+2ν−1

(1 + kn+1)2N+2s−2N0−d+3
+

1

(1 + kn+1)4s−2N0−d+4−2ν(1 + kn+2)

.
∑

kn+1∈N

1

(1 + kn+1)2s−2N0−d+3−2ν
+

ln(1 + kn+1)

(1 + kn+1)4s−2N0−d+4−2ν
< +∞.

�

8. Simultaneous approximation to algebraic numbers

We need a deep result about simultaneous Diophantine approximations proved by Schmidt ([Sch80,
Corollary 1E, page 152] or [Sch70, Corollary of Theorem 2]).

Theorem 18 (Schmidt). — Suppose α1, . . . , α` are ` real algebraic numbers such that 1, α1, . . . , α` are
linearly independent over the field Q and consider η > 0. Then there are only finitely many (` + 1)-tuples
(q1, . . . , q`, p) ∈ Z`+1 such that

(47) max(|q1|, . . . , |q`|) > 0 and |α1q1 + · · ·+ α`q` − p| <
1

max(|q1|, . . . , |q`|)`+η
.

The previous statement is indeed equivalent to the following one.
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Theorem 19. — Suppose α1, . . . , α` are ` real algebraic numbers such that 1, α1, . . . , α` are linearly inde-
pendent over the field Q and consider η > 0. There exists a constant C > 0 which depends on (α1, . . . , α`, `, η)
such that for any (`+ 1)-tuples (p, q1, . . . , q`) ∈ Z`+1\{0}, we have

|α1q1 + · · ·+ α`q` − p| ≥
C

max(|p|, |q1|, . . . , |q`|)`+η
.

Proof of the implication “Theorem 18 ⇒ Theorem 19”. The map

ℵ : (p, q1, . . . , q`) 7→ |α1q1 + · · ·+ α`q` − p| ×max(|q1|, . . . , |q`|)`+η

sends Z × Z`\{0} to (0,+∞) and takes only finitely many values below 1. The map ℵ is thus bounded
from below by a constant which belongs to (0, 1). This fact proves Theorem 19 if (p, q1, . . . , q`) belongs to
Z× Z`\{0}. The case (p, 0, . . . , 0) ∈ Z\{0} × {0}` is obvious since |p| ≥ 1.

Proof of the implication “Theorem 19⇒ Theorem 18”. Let us consider (q1, . . . , q`, p) ∈ Z`+1\{0} such that
(47) holds true. This clearly implies the inequality |p| . max(|q1|, . . . , |q`|) and hence max(|q1|, . . . , |q`|) '
max(|p|, |q1|, . . . , |q`|). Thanks to (47) and Theorem 19 with η/2, we get

|α1q1 + · · ·+ α`q` − p| ≥
C

max(|q1|, . . . , |q`|)`+
η
2

1

max(|q1|, . . . , |q`|)`+η
≥ C

max(|q1|, . . . , |q`|)`+
η
2

C−
2
η ≥ max(|q1|, . . . , |q`|).

There are only many finitely `-tuples (q1, . . . , q`) which satisfy the latter inequality. To finish the proof, we
notice that p also runs over a finite set because of the estimate |p| . max(|q1|, . . . , |q`|).

This achieves the equivalence of Theorem 18 and Theorem 19. Let us now recall that the degree of an
algebraic number α ∈ C is defined by the formula

deg(α) := min{` ∈ N?, ∃P ∈ Q[X]\{0} P (α) = 0 and degP = `}.
In the above definition, we may assume that the coefficients of P are integers. Note that if deg(α) > ` holds
then |P (α)| > 0 for any polynomial P ∈ Z[X]\{0} of degree less or equal to `. For our purpose, we need to
quantify how small can be |P (α)|.

Corollary 20. — Consider an integer ` ≥ 1 and a real algebraic number α of degree deg(α) > `. For any
η > 0, there is a constant C(η, `, α) > 0 such that for any (q0, . . . , q`) ∈ Z`+1\{0} we have

(48)

∣∣∣∣∣∑̀
k=0

qkα
k

∣∣∣∣∣ ≥ C(η, `, α)

max(|q0|, . . . , |q`|)`+η
.

The following result ([Bug04, page 75, Theorem 4.2], [Spr69, see page 1 and page 63]) is the analytic
counterpart of the previous result.

Theorem 21 (Sprindžuk). — Almost every real number α (in the sense of Lebesgue) satisfies the following
: for any integer ` ≥ 1, for any η > 0, there is a constant C(η, `, α) > 0 such that for any (q0, . . . , q`) ∈
Z`+1\{0} we have

(49)

∣∣∣∣∣∑̀
k=0

qkα
k

∣∣∣∣∣ ≥ C(η, `, α)

max(|q0|, . . . , |q`|)`+η
.

Remark 22. — Theorem 21 is often written under another form in the literature. For any real number α
and any integer ` ≥ 1, let us denote by w`(α) the upper bound of the real numbers w for which there exist
infinitely many polynomials P = q0 + · · ·+ q`X

` ∈ Z[X] such that

0 < |P (α)| < 1

max(|q0|, . . . , |q`|)w
.

The Sprindžuk theorem is usually stated as follows : w`(α) = ` for almost every α ∈ R. Using similar
arguments of those of the above equivalence of Theorem 18 and Theorem 19, we easily see that the formulation
of Theorem 21 is nothing else than the inequality w`(α) ≤ `.
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Remark 23. — The estimates (48) and (49) are relevant if and only if |
∑`
k=0 qkα

k| is less than 1, we may
therefore assume that the largest two integers among q0, . . . , q` are of the same order.

We now prove Proposition 9. The reader will easily check that if one uses Theorem 21 instead of Corollary
20 in the following proof, then one obtains an alternative proof of the Delort-Szeftel estimates (Proposition
7) in the particular case {λ2

k, k ∈ N} ⊂ N. The condition deg(m) > 2n+1 implies that the degree of the
algebraic number µ := m2 satisfies

(50) deg(µ) ≥ 1

2
deg(m) > 2n.

Case n = 1. For the convenience of the reader, we sketch the idea for n = 1. The following eight numbers

(51) ±
√
µ+ k1 ±

√
µ+ k2 ±

√
µ+ k3.

are the roots of a polynomial of the following form

X8 + v6(µ, k1, k2, k3)X6 + v4(µ, k1, k2, k3)X4 + v2(µ, k1, k2, k3)X2 + v0(µ, k1, k2, k3),

where v6, v4, v2 and v0 are functions which only depend on (µ, k1, k2, k3). Moreover, it is classical that the
modulus of any root of the previous polynomial in X is greater or equal to

(52) min

(
1,

√
|v0(µ, k1, k2, k3)|√

1 + |v6(µ, k1, k2, k3)|+ |v4(µ, k1, k2, k3)|+ |v2(µ, k1, k2, k3)|

)
.

Note now that the functions v2, v4 and v6 are homogeneous polynomials with respect to (µ, k1, k2, k3) whose
degrees are less or equal to 3. This leads us to bound from below the second term in (52) by

C

√
|v0(µ, k1, k2, k3)|

(µ+ k1 + k2 + k3)3/2
≥ C(m)

√
|v0(µ, k1, k2, k3)|

(1 + max(k1, k2, k3))3/2
.

As v0(µ, k1, k2, k3) is the product of the eight roots (51), a straightforward computation gives

v0(µ, k1, k2, k3) = [3µ2 + 2(k1 + k2 + k3)µ+ 2(k1k2 + k1k3 + k2k3)− k2
1 − k2

2 − k2
3]2.

We now understand why the Schmidt theorem is useful. As we assumed that µ is algebraic of degree larger
than 2, Corollary 20 and Remark 23 allows us to bound from below |v0(µ, k1, k2, k3)| by a negative power of
the second largest integer among

3, k1 + k2 + k3, 2(k1k2 + k1k3 + k2k3)− k2
1 − k2

2 − k2
3.

More precisely, we get for any η > 0 and N0 > 7 the following lower bounds

|v0(µ, k1, k2, k3)| ≥ C(m, η)

(1 + k1 + k2 + k3)4+η

| ±
√
µ+ k1 ±

√
µ+ k2 ±

√
µ+ k3| ≥

C(m,N0)

(1 + k1 + k2 + k3)
1
2N0

.

Case n ≥ 2. One can use the same argument if n ≥ 3 is odd (see remark 25). If n is even, then one
has to modify the proof because of the resonant terms. We prefer to give a unified proof of the case n ≥ 2
whatever the parity of n is. We have to prove (14) in the nonresonant regime. Hence, there are nonnegative
integers K1 < · · · < K` and coefficients ρ1, . . . , ρ` ∈ Z? such that

p∑
j=1

√
µ+ kk −

n+2∑
j=p+1

√
µ+ kj = ρ1

√
µ+K1 + · · ·+ ρ`

√
µ+K`,

(53) 1 ≤ ` ≤ n+ 2, 1 ≤ |ρ1|+ · · ·+ |ρ`| ≤ n+ 2, K` ≤ max(k1, . . . , kn+2).

The subcase ` = 1 presents no difficulty because of the trivial inequality |ρ1

√
µ+K1| ≥

√
µ which implies

(14). The subcase ` ≥ 2 needs the following result (that is proved below).

Proposition 24. — Let us fix an integer ` ≥ 2 and a tuple (ρ1, . . . , ρ`) ∈ (Z?)`. There are polynomials
Z0, . . . , Z2`−2 ∈ Z[X1, . . . , X`], such that

i) the coefficients of the above polynomials merely depend on (`, ρ1, . . . , ρ`),
ii) for any j ∈ [0, 2`−2] ∩ N one has deg(Zj) ≤ 2`−2 − j,
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iii) for any any tuple (K1, . . . ,K`) ∈ (0,+∞)` of distinct numbers, the polynomial µ 7→
∑2`−2

j=0 Zj(K1, . . . ,K`)µ
j

is not zero,
iv) for any µ > 0 there is C(`, ρ1, . . . , ρ`, µ) > 0 such that the following inequality holds true for any tuple

(K1, . . . ,K`) ∈ (0,+∞)`

(54) |ρ1

√
µ+K1 + · · ·+ ρ`

√
µ+K`| ≥ min

1,
C(`, ρ1, . . . , ρ`, µ)

(1 + max(K1, . . . ,K`)
1
2 (2`−1−1)

∣∣∣∣∣∣
2`−2∑
j=0

Zj(K1, . . . ,K`)µ
j

∣∣∣∣∣∣
 .

Let us consider the polynomials Z0, . . . , Z2`−2 as in Proposition 24. Since the integer n is fixed, the
conditions (53) imply that there are a finite number of choices of (`, ρ1, . . . , ρ`) and a finite number of
polynomials Z0, . . . , Z2`−2 . Remembering the equality µ = m2, one may bound from below the constant
C(`, ρ1, . . . , ρ`, µ) by C(n,m) > 0. For the same reason, one can bound all the coefficients of Z0, . . . , Z2`−2

by an (ineffective) constant C(n) > 0. Point ii) of Proposition 24 ensures that the second largest integer
among

Z0(K1, . . . ,K`), . . . , Z2`−2(K1, . . . ,K`)

is less than C(n)(1 + max(K1, . . . ,K`))
2`−2−1. Thanks to (50) and (53), one has deg(µ) > 2n ≥ 2`−2. Note

now that the polynomial µ 7→
∑2`−2

j=0 Zj(K1, . . . ,K`)µ
j is not zero (Point iii of Proposition 24). For any

η > 0, Corollary 20 and Remark 23 give us the following lower bound∣∣∣∣∣∣
2`−2∑
j=0

Zj(K1, . . . ,K`)µ
j

∣∣∣∣∣∣ ≥ C(η,m, n)

(1 + max(K1, . . . ,K`))(2`−2−1)(η+2`−2)

≥ C(η,m, n)(
1 +

√
max(k1, . . . , kn+2

)2(2`−2−1)(η+2`−2)
.

The inequality (54) allows us to conclude that any number N0 > (2`−1 − 1) + 2(2`−2 − 1)2`−2 = 22`−3 − 1 is
convenient in (14) (the maximal value 22n+1 − 1 is obtained for ` = n+ 2).

9. Proof of Proposition 24

Let us introduce the polynomials

U(X,T1, . . . , T`) =
∏

(ω1,...,ω`)=(±1,...,±1)

(
X +

∑̀
k=1

ωkρkTk

)
∈ Z[X,T1, . . . , T`],

Ũ(T1, . . . , T`) =
∏

(ω2,...,ω`)=(±1,...,±1)

(
ρ1T1 +

∑̀
k=2

ωkρkTk

)
∈ Z[T1, . . . , T`].

It is clear that U is even with respect to each variable and we moreover have a decomposition

U(X,T1, . . . , T`) = X2` +

2`−1−1∑
i=0

Vi(T
2
1 , . . . , T

2
` )X2i,

where V0, . . . , V2`−1−1 are homogeneous polynomials satisfying deg(Vi) = 2`−1 − i for each integer i ∈
[0, 2`−1 − 1]. It is moreover clear that the coefficients of each Vi merely depends on (`, ρ1, . . . , ρ`).

The polynomial V0 will play a substantial role and we thus need to remark the following

V0(T 2
1 , . . . , T

2
` ) = U(0, T1, . . . , T`)

= Ũ(T1, . . . , T`)Ũ(−T1, . . . , T`)

= Ũ(T1, . . . , T`)
2.

As above, the 2`−1-homogeneous polynomial Ũ(T1, . . . , T`) is even with respect to each variable (this fact
uses the assumption ` ≥ 2) and thus belongs to Z[T 2

1 , . . . , T
2
` ]. Hence, there is W ∈ Z[T1, . . . , T`] such that

Ũ(T1, . . . , T`) = W (T 2
1 , . . . , T

2
` ), deg(W ) = 2`−2,
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(55) V0(T 2
1 , . . . , T

2
` ) = W (T 2

1 , . . . , T
2
` )2.

Let us now denote by x a real number of the form

x :=
∑̀
k=1

ρk
√
µ+Kk.

We may begin the analysis of the lower bound of |x|. Let us write

0 = U
(
x,
√
µ+K1, . . . ,

√
µ+K`

)
= x2` +

2`−1−1∑
i=0

Vi(µ+K1, . . . , µ+K`)x
2i.

If |x| ≥ 1 holds true, then (54) is obvious. If |x| < 1 holds true then one can write

|V0(µ+K1, . . . , µ+K`)| ≤ |x|2
1 +

2`−1−1∑
i=1

|Vi(µ+K1, . . . , µ+K`)|


≤ C(`, ρ1, . . . , ρ`)|x|2

1 +

2`−1−1∑
i=1

(µ+K1 + · · ·+K`)
2`−1−i


≤ C(`, ρ1, . . . , ρ`, µ)|x|2 (1 + max(K1, . . . ,K`))

2`−1−1
.

Then (55) gives us

(56) |x| ≥ C(`, ρ1, . . . , ρ`, µ)
|W (µ+K1, . . . , µ+K`)|

(1 + max(K1, . . . ,K`))
1
2 (2`−1−1)

.

By decomposing W , we can write

W (µ+K1, . . . , µ+K`) =
∑

i1+···+i`=2`−2

c(i1, . . . , i`)(µ+K1)i1 . . . (µ+K`)
i` , c(i1, . . . , i`) ∈ Z.

Let us admit for a moment that µ 7→ W (µ + K1, . . . , µ + K`) is a nonzero polynomial (with respect to µ)
(see below). One can now introduce the polynomials Zj of the statement of Proposition 24 in the following
way :

W (µ+K1, . . . , µ+K`) =
2`−2∑
j=0

Zj(K1, . . . ,K`)µ
j ,

where each Zj is a (2`−2 − j)-homogeneous polynomial with integer coefficients of ` variables and whose
coefficients only depends on (j, `, ρ1, . . . , ρ`). Point i), Point ii) and Point iv) are checked.

Let us prove Point iii). We have to explain why µ 7→W (µ+K1, . . . , µ+K`) is a nonzero polynomial for
any fixed tuple (K1, . . . ,K`) ∈ (0,+∞)` of distinct numbers. From the above construction, the formula
(55) implies the following one

(57) W (µ+K1, . . . , µ+K`)
2 =

∏
(ω1,...,ω`)={±1,...,±1}

(∑̀
k=1

ωkρk
√
µ+Kk

)
.

If the previous product identically vanishes in the range µ ∈ (0,+∞), then at least one of the analytic func-
tions in the product also identically vanishes. This is impossible because the family of functions (

√
µ+K)K≥0

is linearly independent with respect to µ.

Remark 25. — In the case where n is odd, ` = n+2 and (ρ1, . . . , ρn+2) = (1, . . . , 1), there is an easier way

to prove Point iii). Indeed, it is sufficient to remark that the coefficient of µ2`−1

of W (µ+K1, . . . , µ+K`)
2

in the right-hand side of (57) does not vanish. This is obvious because
∑`
k=1 ωk is an odd integer for any

ω1 = ±1, . . . , ω` = ±1. In other words, (54) gives the inclusion D2n ⊂Mn discussed in the introduction.
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