Asymptotically Optimal Algorithms for Budgeted Multiple Play Bandits - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Asymptotically Optimal Algorithms for Budgeted Multiple Play Bandits

Résumé

We study a generalization of the multi-armed bandit problem with multiple plays where there is a cost associated with pulling each arm and the agent has a budget at each time that dictates how much she can expect to spend. We derive an asymptotic regret lower bound for any uniformly efficient algorithm in our setting. We then study a variant of Thompson sampling for Bernoulli rewards and a variant of KL-UCB for both single-parameter exponential families and bounded, finitely supported rewards. We show these algorithms are asymptotically optimal, both in rate and leading problem-dependent constants, including in the thick margin setting where multiple arms fall on the decision boundary.
Fichier principal
Vignette du fichier
LKC17arxiv.pdf (518 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-01338733 , version 1 (29-06-2016)
hal-01338733 , version 2 (05-11-2017)
hal-01338733 , version 3 (03-09-2019)

Identifiants

Citer

Alexander R. Luedtke, Emilie Kaufmann, Antoine Chambaz. Asymptotically Optimal Algorithms for Budgeted Multiple Play Bandits. 2017. ⟨hal-01338733v2⟩

Collections

MODALX
536 Consultations
417 Téléchargements

Altmetric

Partager

More