The Cambrian Hopf Algebra
Résumé
Cambrian trees are oriented and labeled trees which fulfill local conditions around each node generalizing the conditions for classical binary search trees. Based on the bijective correspondence between signed permutations and leveled Cambrian trees, we define the Cambrian Hopf algebra generalizing J.-L. Loday and M. Ronco’s algebra on binary trees. We describe combinatorially the products and coproducts of both the Cambrian algebra and its dual in terms of operations on Cambrian trees. Finally, we define multiplicative bases of the Cambrian algebra and study structural and combinatorial properties of their indecomposable elements.
Les arbres Cambriens sont des arbres orientés et étiquetés qui satisfont des conditions locales autour de leurs nœuds généralisant les conditions des arbres binaires de recherche classiques. A partir de la correspondence bijective entre permutations signées et arbres Cambriens à niveau, nous définissons l’algèbre Cambrienne qui généralise l’algèbre sur les arbres binaires de J.-L. Loday et M. Ronco. Nous donnons une description combinatoire du produit et du coproduit aussi bien dans l’algèbre Cambrienne que dans sa duale en termes d’opérations sur les arbres Cambriens. Enfin, nous définissons des bases multiplicatives de l’algèbre Cambrienne et étudions les propriétés structurelles et énumératives de leurs éléments indécomposables.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...