Four Variations on Graded Posets - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2015

Four Variations on Graded Posets

Résumé

We explore the enumeration of some natural classes of graded posets, including $(2 + 2)$-avoiding graded posets, $(3 + 1)$-avoiding graded posets, $(2 + 2)$- and $(3 + 1)$-avoiding graded posets, and the set of all graded posets. As part of this story, we discuss a situation when we can switch between enumeration of labeled and unlabeled objects with ease, which helps us generalize a result by Postnikov and Stanley from the theory of hyperplane arrangements, answer a question posed by Stanley, and see an old result of Klarner in a new light.
Nous étudions l’énumération de certaines classes naturelles de posets gradués, y compris ceux qui évitent les motifs $(2+2)$, $(3+1)$, $(2+2)$ et $(3+1)$, et l’ensemble de tous les posets gradués. En particulier, nous considérons une situation où l’énumération d’objets marqués et non marqués sont reliées de façon simple, ce qui nous permet de généraliser un résultat de Postnikov et Stanley en théorie des arrangements d’hyperplans, répondre à une question posée par Stanley, et voir sous un nouveau jour un vieux résultat de Klarner et Kreweras.
Fichier principal
Vignette du fichier
Poster44.pdf (288.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01337770 , version 1 (27-06-2016)

Licence

Identifiants

Citer

Yan X Zhang. Four Variations on Graded Posets. 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Jul 2015, Daejeon, South Korea. pp.829-840, ⟨10.46298/dmtcs.2492⟩. ⟨hal-01337770⟩

Collections

TDS-MACS
68 Consultations
654 Téléchargements

Altmetric

Partager

More