Some combinatorial identities involving noncommuting variables
Résumé
We derive combinatorial identities for variables satisfying specific sets of commutation relations. The identities thus obtained extend corresponding ones for $q$-commuting variables $x$ and $y$ satisfying $yx=qxy$. In particular, we obtain weight-dependent binomial theorems, functional equations for generalized exponential functions, we propose a derivative of noncommuting variables, and finally utilize one of the considered weight functions to extend rook theory. This leads us to an extension of the $q$-Stirling numbers of the second kind, and of the $q$-Lah numbers.
Nous obtenons des identités combinatoires pour des variables satisfaisant des ensembles spécifiques de relations de commutation. Ces identités ainsi obtenues généralisent leurs analogues pour des variables $q$-commutantes $x$ et $y$ satisfaisant $yx=qxy$. En particulier, nous obtenons des théorèmes binomiaux dépendant du poids, des équations fonctionnelles pour les fonctions exponentielles généralisées, nous proposons une dérivée des variables non-commutatives, et finalement nous utilisons l’une des fonctions de poids considérées pour étendre la théorie des tours. Nous en déduisons une généralisation des $q$-nombres de Stirling de seconde espèce et des $q$-nombres de Lah.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...