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Some combinatorial identities involving
noncommuting variables

Michael Schlosser† and Meesue Yoo‡

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

Abstract. We derive combinatorial identities for variables satisfying specific sets of commutation relations. The iden-
tities thus obtained extend corresponding ones for q-commuting variables x and y satisfying yx = qxy. In particular,
we obtain weight-dependent binomial theorems, functional equations for generalized exponential functions, we pro-
pose a derivative of noncommuting variables, and finally utilize one of the considered weight functions to extend rook
theory. This leads us to an extension of the q-Stirling numbers of the second kind, and of the q-Lah numbers.

Résumé. Nous obtenons des identités combinatoires pour des variables satisfaisant des ensembles spécifiques de
relations de commutation. Ces identités ainsi obtenues généralisent leurs analogues pour des variables q-commutantes
x et y satisfaisant yx = qxy. En particulier, nous obtenons des théorèmes binomiaux dépendant du poids, des
équations fonctionnelles pour les fonctions exponentielles généralisées, nous proposons une dérivée des variables
non-commutatives, et finalement nous utilisons l’une des fonctions de poids considérées pour étendre la théorie des
tours. Nous en déduisons une généralisation des q-nombres de Stirling de seconde espèce et des q-nombres de Lah.

Keywords: noncommuting variables, weight dependent binomial theorem, combinatorial identities

1 Introduction
A fundamental question of algebraic combinatorics concerns the study of connections between algebraic
relations and combinatorics. For instance, the well-studied q-commutation relations yx = qxy can be
interpreted in terms of weighted lattice paths. The algebraic expression “xy” would refer to a path going
one step east, then one step north, while “yx” would refer to a path with first step north and second step
east. Keeping track of the area “covered” by the path (i.e., the number of square units below the path) and
assigning the weight of a path P to be qa where a is the area of P , we see that the weight of the path yx
is q whereas the weight of xy is 1, or, with other words, the path yx has an additional weight q compared
to the path xy. The commutation relation yx = qxy describes exactly the change of the weights when the
two steps are interchanged.

Our purpose here is to carry out a similar analysis with even more general weights (which depend on the
position of the steps of the path). In particular, we establish noncommutative extensions of the binomial
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theorem, functional equations for generalized exponentials, propose a weighted derivative, and employ
one of the weight functions in rook theory by which we are led to an extension of the q-Stirling numbers
of the second kind, and of the q-Lah numbers.

Overall, we expect that our findings will not only have applications to algebraic combinatorics but also
to noncommutative analysis, algebraic geometry, and quantum groups.

2 Noncommutative weight-dependent binomial theorem
Let N and N0 denote the sets of positive and nonnegative integers, respectively.

Definition 2.1 For a doubly-indexed sequence of indeterminates (w(s, t))s,t∈N, let Cw[x, y] be the asso-
ciative unital algebra over C generated by x and y, satisfying the following three relations :

yx = w(1, 1)xy, (1a)
xw(s, t) = w(s+ 1, t)x, (1b)
yw(s, t) = w(s, t+ 1)y, (1c)

for all (s, t) ∈ N2.

For s ∈ N and t ∈ N0, we define

W (s, t) :=

t∏
j=1

w(s, j), (2)

the empty product being defined to be 1. Note that for s, t ∈ N, we have w(s, t) =W (s, t)/W (s, t− 1).
We refer to the w(s, t) as small weights, whereas to the W (s, t) as big weights (or column weights).

Let the weight-dependent binomial coefficients be defined by

w

[
0
0

]
= 1,

w

[
n
k

]
= 0 for n ∈ N0, and k ∈ −N or k > n, (3a)

and

w

[
n+ 1
k

]
=
w

[
n
k

]
+
w

[
n

k − 1

]
W (k, n+ 1− k) for n, k ∈ N0. (3b)

These weight-dependent binomial coefficients have a combinatorial interpretation in terms of weighted
lattice paths, see [5]. A lattice path is a sequence of north (0, 1) and east (1, 0) steps in the first quadrant
of the xy-plane, starting at the origin (0, 0) and ending at say (n,m). We give weights to such paths by
assigning the big weightW (s, t) to each east step (s−1, t)→ (s, t) and 1 to each north step. Then define
the weight of a path P , w(P ), to be the product of the weight of all its steps.

Given two points A,B ∈ N2
0, let P(A→ B) be the set of all lattice paths from A to B, and define

w(P(A→ B)) :=
∑

P∈P(A→B)

w(P ).
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Then we have

w(P((0, 0)→ (k, n− k))) =
w

[
n
k

]
(4)

as both sides of the equation satisfy the same recursion and initial condition as in (3).
Interpreting the x-variable as an east step and the y-variable as a north step, we get the following weight

dependent binomial theorem.

Theorem 2.2 ([6]) Let n ∈ N0. Then, as an identity in Cw[x, y],

(x+ y)n =

n∑
k=0w

[
n
k

]
xkyn−k. (5)

3 a, b-weights
Theorem 2.2 holds with the elliptic weights

wa,b;q,p(s, t) =
θ(aqs+2t, bq2s+t−2, aqt−s−1/b; p)

θ(aqs+2t−2, bq2s+t, aqt−s+1/b; p)
q (6)

where a and b are two independent variables, while q and p are complex numbers with |p| < 1, usually
referred to as the base and nome, respectively, and

Wa,b;q,p(s, t) =
θ(aqs+2t, bq2s, bq2s−1, aq1−s/b, aq−s/b; p)

θ(aqs, bq2s+t, bq2s+t−1, aqt−s+1/b, aqt−s/b; p)
qt, (7)

where θ(x; p) is the modified Jacobi theta function with nome p, defined by

θ(x; p) =
∏
j≥0

(
(1− pjx)(1− pj+1/x)

)
, |p| < 1.

For these weights, we have the elliptic binomial coefficient[
n
k

]
a,b;q,p

:=
(q1+k, aq1+k, bq1+k, aq1−k/b; q, p)n−k

(q, aq, bq1+2k, aq/b; q, p)n−k
. (8)

Here, we have employed the notation for the theta shifted factorial (or q, p-shifted factorial), defined by

(a; q, p)n =


∏n−1
k=0 θ(aq

k; p), n = 1, 2, . . . ,

1, n = 0,

1/
∏−n−1
k=0 θ(aqn+k; p), n = −1,−2, . . . ,

together with

(a1, a2, . . . , am; q, p)n =

m∏
k=1

(ak; q, p)n,

for compact notation. For p = 0 we have θ(x; 0) = 1 − x and, hence, (a; q, 0)n = (a; q)n is a q-shifted
factorial in base q.
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In fact, the elliptic binomial coefficients in (8) generalize the familiar q-binomial coefficients, which
are obtained by letting p→ 0, a→ 0, then b→ 0, in this order.

Basic hypergeometric series (and q-series) are covered with great detail in Gasper and Rahman’s text-
book [2]; elliptic hypergeometric series are studied there in Chapter 11.

By letting p→ 0, the elliptic weights wa,b;q,p(s, t) specialize to

w(s, t) = wa,b;q(s, t) =
(1− aqs+2t)(1− bq2s+t−2)(1− aqt−s−1/b)
(1− aqs+2t−2)(1− bq2s+t)(1− aqt−s−1/b)

q, (9a)

the associated big weights being

W (s, t) =Wa,b;q(s, t) =
(1− aqs+2t)(1− bq2s)(1− bq2s−1)(1− aq1−s/b)(1− aq−s/b)

(1− aqs)(1− bq2s+t)(1− bq2s+t−1)(1− aqt−s+1/b)(1− aqt−s/b)
qt.

(9b)
The corresponding binomial coefficients are

w

[
n
k

]
=

[
n
k

]
a,b;q

=
(q1+k, aq1+k, bq1+k, aq1−k/b; q)n−k

(q, aq, bq1+2k, aq/b; q)n−k
, (10)

Then in the unital algebra Ca,b;q[x, y] over C defined by the following commutation relations

yx =
(1− aq3)(1− bq)(1− a/bq)
(1− aq)(1− bq3)(1− aq/b)

qxy, (11a)

xa = qax, xb = q2bx, (11b)

ya = q2ay, yb = qby, (11c)

the following binomial theorem holds

(x+ y)n =

n∑
k=0

[
n
k

]
a,b;q

xkyn−k. (12)

On the other hand, we have the following new identity which can be proved by induction on n.

Proposition 3.1 For any constant c independent from a, b, we have

n−1∏
←−−
k=0

(1−Wa,b;q(1, k)cx)

=

n∑
k=0

(−c)k
[
n
k

]
a,b;q

(aqn; q)k
(aqn−k+1; q)k

(bq; q)k
(bqk; q)k

(a/b; q−1)k(aq/b; q)n−k
(aqn−1/b; q−1)k(aq1−k/b; q)n−k

xk, (13)

where the product (containing the left arrow←) of noncommuting factors is carried out from right to left.
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3.1 The a→ 0 case

3.1.1 The b, q-binomial theorem
If one lets a→ 0 in (9a), then the corresponding weights are

w0,b;q(s, t) =
(1− bq2s+t−2)
(1− bq2s+t)

q, (14a)

W0,b;q(s, t) =
(1− bq2s)(1− bq2s−1)

(1− bq2s+t)(1− bq2s+t−1)
qt. (14b)

In the unital algebra C0,b;q[x, y] over C defined by the following three relations

yx =
(1− bq)
(1− bq3)

qxy, (15a)

xb = q2bx, (15b)
yb = qby, (15c)

the following binomial theorem holds :

(x+ y)n =

n∑
k=0

[
n
k

]
0,b;q

xkyn−k, (16)

where [
n
k

]
0,b;q

=
(q1+k, bq1+k; q)n−k
(q, bq1+2k; q)n−k

.

In (16), by interchanging k and n− k and using the relation

xlyk =
(bq1+k; q)2l
(bq; q)2l

q−klykxl,

we get

(x+ y)n =

n∑
k=0

(q1+n−k, bq1+n−k; q)k
(q, bq1+2n−2k; q)k

xn−kyk

=

n∑
k=0

(q1+n−k, bq1+n−k; q)k
(q, bq1+2n−2k; q)k

× (bq1+k; q)2n−2k
(bq; q)2n−2k

q−k(n−k)ykxn−k

=

n∑
k=0

(q; q)n
(q; q)k(q; q)n−k

(bq; q)n
(bq; q)k(bq; q)n−k

qk(k−n)ykxn−k.

Also note that we can derive the following identity

n−1∏
k=0

(
by +

(bq2; q−1)k
(b; q−1)k

x

)
=

n∑
k=0

[
n
k

]
0,b;q

(bqk+2; q)n−1
(bq2; q)n−1

qk(k−n)xk(by)n−k. (17)
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3.1.2 Identities for b, q-exponentials
Let us define the b, q-exponential by

eb,q(z) :=

∞∑
n=0

1

(q; q)n(bq; q)n
zn. (18)

Note that when b = 0, we get the original q-exponential

eq(z) = e0,q(z) =

∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
.

The following Proposition generalizes the well-known identity for q-exponentials eq(x+y) = eq(x)eq(y)
(a.k.a. Cauchy identity) which was first observed by Schützenberger [7].

Proposition 3.2 In the algebra C0,b;q[x, y], we have

eb,q(x+ y) = eb,q(x)eb,q(y). (19)

Proof: We apply the b, q-binomial theorem to expand (x+ y)n in eb,q(x+ y). Then the left-hand side of
(19) can be written as

eb,q(x+ y) =

∞∑
n=0

1

(q; q)n(bq; q)n
(x+ y)n

=

∞∑
n=0

1

(q; q)n(bq; q)n

n∑
k=0

[
n
k

]
0,b;q

xkyn−k

=

∞∑
n=0

1

(q; q)n(bq; q)n

n∑
k=0

(q; q)n
(q; q)k(q; q)n−k

(bq; q)n(bq; q)2k
(bq; q)k(bq; q)n+k

xkyn−k

=

∞∑
n=0

n∑
k=0

1

(q; q)k(q; q)n−k(bq; q)k(bq1+2k; q)n−k
xkyn−k

=

∞∑
n=0

n∑
k=0

1

(q, bq; q)k
xk

1

(q, bq; q)n−k
yn−k

= eb,q(x)eb,q(y).

Note that we used the relation (15b) to exchange x’s and b’s. 2

Remark 3.3 Let us set
Fb,q(x) =

∑
n≥0

1

(q, bq; q)n
xn.

Then we can verify that Fb,q(x) satisfies the following two relations

Fb,q(x)− Fb,q(qx) =
1

(1− bq)
xFb/q,q(x), (20a)
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Fb,q(x)− bFb,q(qx) = (1− b)Fb/q,q(x). (20b)

Combining (20a) and (20b) to eliminate Fb/q,q(x) gives(
1− 1

(1− bq)(1− bq2)
x

)
Fb,q(x) =

(
1− bq2

(1− bq)(1− bq2)
x

)
Fb,q(qx),

or

Fb,q(x) =

(
1− 1

(1− bq)(1− bq2)
x

)−1(
1− bq2

(1− bq)(1− bq2)
x

)
Fb,q(qx). (21)

By iterating (21), we get

Fb,q(x) =

∞∏
−−→
k=0

[(
1− 1

(1− bq)(1− bq2)
xqk
)−1(

1− bq2

(1− bq)(1− bq2)
xqk
)]

, (22)

where the product (containing the right arrow →) of noncommuting factors is carried out from left to
right as k increases. This gives a product form for the b, q-exponential eb,q(x).

If we put y 1
1−b for z in the original q-exponential, we get

eq

(
y

1

1− b

)
=

∞∑
n=0

1

(q; q)n

(
y

1

1− b

)n
=

∞∑
n=0

1

(q; q)n(bq; q)n
yn = eb,q(y).

Hence, by the property of the original q-exponential, we have

eb,q(y) =
1

(y(1− b)−1; q)∞

when the multiplication on the right-hand side in the infinite product is done from left to right. Let
u = −xy−1(1− bq) and v = y(1− b)−1. Then these two new variables satisfy

vu = quv.

So by the properties of the q-exponential (cf. [4]),

eq(u)eq(v) = eq(u+ v), (23a)
eq(v)eq(u) = eq(u)eq(−uv)eq(v). (23b)

Note that eq(v) = eb,q(y) and −uv = x. So we get

eb,q(y)eq(−xy−1(1− bq)) = eq(−xy−1(1− bq))eq(x)eb,q(y). (24)

Now

eq(−xy−1(1− bq)) =
∞∑
n=0

1

(q; q)n
(−xy−1(1− bq))n
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=

∞∑
n=0

(bq2; q)n
(q; q)n

(−xy−1)n.

So, if we define

Eb,q(z) =

∞∑
k=0

(bq2; q)k
(q; q)k

(−z)k, (25)

then (24) can be rewritten as

eb,q(y)Eb,q(xy
−1) = Eb,q(xy

−1)eq(x)eb,q(y). (26)

3.2 The b→ 0 case

3.2.1 The a, q-binomial theorem
If one lets b→ 0 in (9), then the corresponding weights are

wa,0;q(s, t) =
(1− aqs+2t)

(1− aqs+2t−2)
q−1, (27a)

Wa,0;q(s, t) =
(1− aqs+2t)

(1− aqs)
q−t. (27b)

In the unital algebra Ca,0;q[x, y] over C defined by the following three relations

yx =
(1− aq3)
(1− aq)

q−1xy, (28a)

xa = qax, (28b)

ya = q2ay, (28c)

the following binomial theorem holds :

(x+ y)n =

n∑
k=0

[
n
k

]
a,0;q

xkyn−k, (29)

where [
n
k

]
a,0;q

=
(q1+k, aq1+k; q)n−k

(q, aq; q)n−k
qk(k−n).

3.2.2 An a, q-derivative operator
Definition 3.4 Define operators acting on x-variables only in Ca,0;q[x]

Da;q(xn) =
(1− qn)(1− aqn)
(1− q)(1− aq)

q1−nxn−1, (30a)

Da;q(c(a, q)xn) = c(aq−1, q)Da;q(xn), (30b)
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where c(a, q) is any function depending on a and q, and

ηa;q(f(x)) = yx−1f(x)xy−1,

so that

ηa;qx
n =

(1− aqn+1)(1− aqn+2)

(1− aq)(1− aq2)
q−nxn, (31a)

ηa;q(c(a, q)f(x)) = c(aq, q)ηa;q(f(x)). (31b)

These operators satisfy the following relation (“Pincherle derivative”):

Da;qx− xDa;q = ηa;q.

More generally, the following holds.

Proposition 3.5 For k ≥ 1,

Dka;qx− xDka;q =
[
k
1

]
aq,0;q

Wa,0;q(k + 1, 1− k)Dk−1a;q (ηa;q).

Proof: We apply both sides of the operator equation to c(a, q)xn and verify that the results are the same.
2

4 Extension of rook theory
Here we utilize the elliptic weight defined in (6) to extend the q-rook polynomials. For this, we consider
an n×n grid, [n]× [n], where [n] = {1, 2, . . . , n} and label the rows from top to bottom with 1, 2, 3, . . . ,
and the columns from left to right with 1, 2, 3, . . . , and let (i, j) denote the square in the i-th column from
the left and j-th row from the top. A board is a subset of [n] × [n], and a board B = B(b1, . . . , bn) is
called a Ferrers board if it consists of bottom-right justified cells, that is, for b1 ≤ b2 ≤ · · · ≤ bn,

B = B(b1, . . . , bn) = {(i, j) | 1 ≤ i ≤ n, n− bi + 1 ≤ j ≤ n}.

From now on, we only consider Ferrers boards. We say that we place k nonattacking rooks in B for
choosing a k-subset of B such that no two elements have a common coordinate. Let Nk(B) denote the
set of all k-rook placements in B such that no two rooks lie in the same row or column. The k-th rook
number of B is defined by rk(B) = |Nk(B)|. Garsia and Remmel [1] introduced a q-analogue of the
rook numbers for Ferrers boards

rk(q;B) =
∑
P∈Nk

qinv(P )

where inv(P ) counts the number of uncancelled cells in a k-rook placement P when a rook in P cancels
all cells in the same row to its right, and all cells below it, and itself, and they showed that

n∏
i=1

[z + bi − i+ 1]q =

n∑
k=0

rn−k(q;B)[z]q ↓k, (32)

where [n]q =
1−qn
1−q and [n]q ↓k= [n]q[n− 1]q . . . [n− k + 1]q .

Here we define an elliptic analogue of the q-rook number.
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Definition 4.1 Given a Ferrers board B, we define the elliptic analogue of the k-rook number by

rk(a, b; q, p;B) =
∑

P∈Nk(B)

wt(P ),

where
wt(P ) =

∏
(i,j)∈Unc(P )

wa,b;q,p(1, i+ j − 1− rP,(i,j)),

wa,b;q,p(1, k) =
θ(aq2k+1,bqk,aqk−2/b;p)
θ(aq2k−1,bqk+2,aqk/b;p)

q, Unc(P ) is the set of uncancelled cells in B of P , and rP,(i,j) is
the number of rooks in P which are in the north-west region of (i, j).

Notice that in the elliptic case the weight of a rook placement P is much more involved than in the much
simpler q-case (where the quantities rP,(i,j) are not needed).

The rk(a, b; q, p;B) happen to satisfy an analogous identity to (32).

Theorem 4.2 For a Ferrers board B = B(b1, . . . , bn), with b1 ≤ b2 ≤ · · · ≤ bn, we have

n∏
i=1

[
z + bi − i+ 1

1

]
aq2(n−bi+i−1),bqn−bi+i−1;q,p

=

n∑
k=0

rn−k(a, b; q, p;B)

k∏
j=1

[
z − j + 1

1

]
aq2n+2j−2,bqn+j−1;q,p

. (33)

Proof: The proof is similar to the proof in the q-rook number case given in [1]. We extend the board by
attaching an n × z rectangular shape board below the original board B and denote the extended board
by Bz . Say we place n rooks in Bz and compute

∑
P∈Nn(Bz)

wt(P ). Then the left-hand side of (33)
computes it by placing rooks column-wise, and the right-hand side computes it by placing n − k rooks
in B first, and then placing k rooks in the empty columns of the n × z board below B. In doing so, the
following lemma is crucial to get a product formula.

Lemma 4.3 Suppose that Q ∈ Nt(Bz) is a rook placement of t rooks in the first i−1 columns of Bz . Let
Di(Q) denote the set of all rook placements which extend Q by adding a rook in column i. Then we have∑

P∈Di(Q)

wt(P ) =

[
bi + z − t

1

]
aq2(n−bi+i−1),bqn−bi+i−1;q,p

wt(Q). (34)

The above lemma can be proved easily by considering the combinatorial interpretation of the weighted
binomial coefficients given in (4). The weights of the uncancelled cells add up nicely to a binomial
coefficient by subtracting rP,(i,j) in the definition of the weight of uncancelled cells wa,b;q,p(1, i + j −
1− rP,(i,j)). We omit the details of the proof. 2

As the Stirling numbers have nice rook theoretic interpretations when B is a staircase board Stn =
B(0, 1, . . . , n − 1), Theorem 4.2 gives an elliptic analogue of the Stirling numbers of the second kind.
For bi = i− 1, (33) becomes([

z
1

]
aq2n,bqn;q,p

)n
=

n∑
k=0

rn−k(a, b; q, p;Stn)

k∏
j=1

[
z − j + 1

1

]
aq2n+2j−2,bqn+j−1;q,p

. (35)
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If we replace a by aq−2n and b by bq−n in (35), then rn−k(aq
−2n, bq−n; q, p;Stn) become the el-

liptic Stirling numbers of the second kind Sa,b;q,p(n, k), which have recently been defined by Zsófia
Kereskényiné Balogh and the first author [3]. If we denote rn−k(a, b; q, p;Stn) in (35) by Sa,b;q,p(n, k),
then by considering whether there is a rook in the last column or not, we get the following recursion

Sa,b;q,p(n+1, k) =Waq2n+2,bqn+1;q,p(1, k−1)Saq2;bq;q,p(n, k−1)+
[
k
1

]
aq2n+2,bqn+1;q,p

Saq2,bq;q,p(n, k),

(36)
where Wa,b;q,p(s, t) is as defined in (7).

Also, by considering the board Ln = B(n − 1, n − 1, . . . , n − 1), we get an elliptic analogue of the
Lah numbers. With bi = n− 1 for all i = 1, . . . , n, (33) becomes[

z + n− 1
1

]
aq2,bq;q,p

[
z + n− 2

1

]
aq4,bq2;q,p

. . .

[
z
1

]
aq2n,bqn;q,p

=

n∑
k=1

rn−k(a, q;Ln)

[
z
1

]
aq2n,bqn;q,p

[
z − 1
1

]
aq2n+2,bqn+1;q,p

. . .

[
z − k + 1

1

]
aq2n+2k−2,bqn+k−1;q,p

.

(37)

Let Ln,k(a, b; q, p) denote rn−k(a, b; q, p;Ln). Then according to whether there is a rook in the union of
the top row and the last column of the board Ln or not, we get the following recursion for Ln,k(a, b; q, p)

Ln+1,k(a, b; q, p) =Waq2,bq;q(1, n+ k− 1)Ln,k−1(aq2, bq; q, p)+
[
n+ k
1

]
aq2,bq;q,p

Ln,k(aq2, bq; q, p).

(38)
If we let p = 0 and b→ 0, then the a, q-analogues of the Lah numbers have the following closed form

Ln,k(a, q) = q(
k
2)−(

n
2)−n(k−1)

[
n
k

]
q

[n− 1]q!

[k − 1]q!

(aqn+k+1; q)n+k
(aq3; q2)n(aq2+2n; q2)k

(39)

(the elliptic Lah numbers don’t have closed form), which converge to the q-Lah numbers when a → ∞.
Kereskényiné Balogh and the first author [3] also have arrived at an elliptic analogue of Lah numbers
which are consistent with the above Ln,k(a, b; q, p) when a is replaced by aq−2n and b is replaced by
bq−n. Note that we can get the a, b-weighted version of Stirling numbers and Lah numbers by letting
p = 0.

5 Remarks
1. The a-weight can be expressed as

wa,0;q(s, t) =
(1− aqs+2t)

(1− aqs+2t−2)
q−1 =

q−
s
2−t/
√
a−
√
aq

s
2+t

q−
s
2−t+1/

√
a−
√
aq

s
2+t−1

.

(The choice of the square root of a does not matter, as long as it is the same everywhere.) If we let
q = eix,

√
a = ei(α+1)x, then

wa,0;q(s, t) =
e−i(α+

s
2+t+1)x − ei(α+ s

2+t+1)x

e−i(α+
s
2+t)x − ei(α+ s

2+t)x
=

sin(α+ s
2 + t+ 1)x

sin(α+ s
2 + t)x



972 Michael Schlosser and Meesue Yoo

=
Uα+ s

2+t
(x)

Uα+ s
2+t−1(x)

,

where Un(cos θ) =
sin(n+1)θ

sin θ is the Chebyshev polynomial of the second kind. Hence the a-weight
wa,0;q(s, t) can be considered as a quotient of generalized Chebyshev polynomials. Thus the iden-
tities related to the a-weights can be reformulated as identities for Chebyshev polynomials of the
second kind.

2. It is important to realize that every identity involving the variables a, b, x and y respecting the com-
mutative relations (11) also holds when they are replaced by the variables b, a, y and x, respectively,
due to the symmetry of (11).

In this way we can immediately deduce various additional results such as a, q-versions from cor-
responding b, q-versions (and vice-versa), etc. To single out a particular result, we note that the
following functional equation of a, q-exponentials

ea,q(x+ y) = ea,q(y)ea,q(x) (40)

holds where, as in (18),

ea,q(z) :=

∞∑
n=0

1

(q; q)n(aq; q)n
zn. (41)

3. We were able to establish functional equations for a, q- and for b, q-exponentials. As a matter of fact,
we were not able to unify both results and obtain a nice functional equation for a, b, q-exponentials.
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