Breaking Good: Accounting for Fragility of Genomic Regions in Rearrangement Distance Estimation
Abstract
Models of evolution by genome rearrangements are prone to two types of flaws: One is to ignore the diversity of susceptibility tobreakage across genomic regions, and the other is to suppose that susceptibility values are given. Without necessarily supposing theirprecise localization,we call “solid” the regions that are improbably broken by rearrangements and “fragile” the regions outside solidones.We propose a model of evolution by inversions where breakage probabilities vary across fragile regions and over time. It containsas a particular case the uniform breakage model on the nucleotidic sequence,where breakage probabilities are proportional to fragileregion lengths. This is very different from the frequently used pseudo uniform model where all fragile regions have the same probabilityto break. Estimations of rearrangement distances based on the pseudo uniform model completely fail on simulations with thetruly uniform model. On pairs of amniote genomes, we show that identifying coding genes with solid regions yields incoherentdistance estimations, especially with the pseudo uniform model, and to a lesser extent with the truly uniform model. This incoherenceis solved when we coestimate the number of fragile regions with the rearrangement distance. The estimated number of fragileregions is surprisingly small, suggesting that a minority of regions are recurrently used by rearrangements. Estimations for several pairsof genomes at different divergence times are in agreement with a slowly evolvable colocalization of active genomic regions in the cell.
Domains
Bioinformatics [q-bio.QM]Origin | Publication funded by an institution |
---|
Loading...