On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2018

On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant

Résumé

In this paper the Hartree equation is derived from the $N$-body Schr\"odinger equation in the mean-field limit, with convergence rate estimates that are uniform in the Planck constant $\hbar$. Specifically, we consider the two following cases: (a) T\"oplitz initial data and Lipschitz interaction forces, and (b) analytic initial data and interaction potential, over short time intervals independent of $\hbar$. The convergence rates in these two cases are $1/\sqrt{\log\log N}$ and $1/N$ respectively. The treatment of the second case is entirely self-contained and all the constants appearing in the final estimate are explicit. It provides a derivation of the Vlasov equation from the $N$-body classical dynamics using BBGKY hierarchies instead of empirical measures.
Fichier principal
Vignette du fichier
MFSCInterpolationR3bis.pdf (531.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01334365 , version 1 (20-06-2016)
hal-01334365 , version 2 (29-06-2016)
hal-01334365 , version 3 (16-09-2016)
hal-01334365 , version 4 (31-10-2016)
hal-01334365 , version 5 (23-11-2016)
hal-01334365 , version 6 (30-06-2018)

Identifiants

Citer

François Golse, Thierry Paul, Mario Pulvirenti. On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant. Journal of Functional Analysis, 2018, 275 (7), pp.1603-1649. ⟨10.1016/j.jfa.2018.06.008⟩. ⟨hal-01334365v6⟩
499 Consultations
248 Téléchargements

Altmetric

Partager

More