On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2018

On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant

Résumé

In this paper the Hartree equation is derived from the $N$-body Schr\"odinger equation in the mean-field limit, with convergence rate estimates that are uniform in the Planck constant $\hbar$. Specifically, we consider the two following cases: (a) T\"oplitz initial data and Lipschitz interaction forces, and (b) analytic initial data and interaction potential, over short time intervals independent of $\hbar$. The convergence rates in these two cases are $1/\sqrt{\log\log N}$ and $1/N$ respectively. The treatment of the second case is entirely self-contained and all the constants appearing in the final estimate are explicit. It provides a derivation of the Vlasov equation from the $N$-body classical dynamics using BBGKY hierarchies instead of empirical measures.
Fichier principal
Vignette du fichier
interpolationFG3TPTFSderdeder-essai.pdf (362.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01334365 , version 1 (20-06-2016)
hal-01334365 , version 2 (29-06-2016)
hal-01334365 , version 3 (16-09-2016)
hal-01334365 , version 4 (31-10-2016)
hal-01334365 , version 5 (23-11-2016)
hal-01334365 , version 6 (30-06-2018)

Identifiants

Citer

François Golse, Thierry Paul, Mario Pulvirenti. On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant. Journal of Functional Analysis, In press. ⟨hal-01334365v5⟩
499 Consultations
248 Téléchargements

Altmetric

Partager

More