Heteroclinic structure of parametric resonance in the nonlinear Schrödinger equation - Archive ouverte HAL
Article Dans Une Revue Physical Review Letters Année : 2016

Heteroclinic structure of parametric resonance in the nonlinear Schrödinger equation

Résumé

We show that the nonlinear stage of modulational instability induced by parametric driving in the defocusing nonlinear Schrödinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearized Floquet analysis.
Fichier principal
Vignette du fichier
LQ15525_revised_final.pdf (3.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01333882 , version 1 (20-06-2016)

Identifiants

Citer

Matteo Conforti, Arnaud Mussot, Alexandre Kudlinski, Simona Rota Nodari, Guillaume Dujardin, et al.. Heteroclinic structure of parametric resonance in the nonlinear Schrödinger equation. Physical Review Letters, 2016, 117 (1), ⟨10.1103/PhysRevLett.117.013901⟩. ⟨hal-01333882⟩
392 Consultations
182 Téléchargements

Altmetric

Partager

More