Parametric inference for discrete observations of diffusion processes with mixed effects - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Parametric inference for discrete observations of diffusion processes with mixed effects

Résumé

Stochastic differential equations with mixed effects provide means to model intraindividual and in-terindividual variability in biomedical experiments based on longitudinal data. We consider N i.i.d. stochastic processes (Xi(t), t ∈ [0, T ]), i = 1,. .. , N , defined by a stochastic differential equation with linear mixed effects. We consider a parametric framework with distributions leading to explicit approximate likelihood functions and investigate the asymptotic behaviour of estimators under the double asymptotic framework: the number N of individuals (trajectories) and the number n of observations per individual tend to infinity within the fixed time interval [0, T ]. The estimation method is assessed on simulated data for various models comprised in our framework.
Fichier principal
Vignette du fichier
EDSM_driftordiff_16_06_16.pdf (569.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01332630 , version 1 (16-06-2016)

Identifiants

  • HAL Id : hal-01332630 , version 1
  • PRODINRA : 393853

Citer

Maud Delattre, Valentine Genon-Catalot, Catherine Larédo. Parametric inference for discrete observations of diffusion processes with mixed effects. 2016. ⟨hal-01332630⟩
264 Consultations
301 Téléchargements

Partager

More