Graded structures and differential operators on nearly holomorphic and quasimodular forms on classical groups
Résumé
We wish to use graded structures [KrVu87], [Vu01] on dffierential operators and quasimodular forms on classical groups and show that these structures provide a tool to construct p-adic measures and p-adic L-functions on the corresponding non-archimedean weight spaces. An approach to constructions of automorphic L-functions on uni-tary groups and their p-adic avatars is presented. For an algebraic group G over a number eld K these L functions are certain Euler products L(s, π, r, χ). In particular, our constructions cover the L-functions in [Shi00] via the doubling method of Piatetski-Shapiro and Rallis. A p-adic analogue of L(s, π, r, χ) is a p-adic analytic function L p (s, π, r, χ) of p-adic arguments s ∈ Z p , χ mod p r
Origine | Fichiers produits par l'(les) auteur(s) |
---|